In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propa...In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).展开更多
Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspect...Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.展开更多
In this paper, a new method of time reversal for defect diagnosis of concealed structure has been proposed based on the detecting technique of structure acoustic wave and the theory of time reversal. The time reversal...In this paper, a new method of time reversal for defect diagnosis of concealed structure has been proposed based on the detecting technique of structure acoustic wave and the theory of time reversal. The time reversal recurrence formula for detecting the acoustic wave speed constitution of concealed structures with bilevel asynchronous test has been established. The wave speed constitution can be reconstructed in 2 D graticule form by means of this method. The result of model test shows the method is valid.展开更多
In order to develop the acoustic keyboard for Personal Computer(PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing pro...In order to develop the acoustic keyboard for Personal Computer(PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing property of Time Reversal Mirror(TRM) is introduced,and then a mathe-matical model of microphone array receiving typing sound is established according to the realization of acoustic keyboard from which the TRM localization algorithm is carried out.The results through computer simulation show that the localization Root Mean Square Error(RMSE) performance of the algorithm can reach 10-3,which demonstrates that the algorithm possesses a high accuracy for the actual near-field acoustic source localization,with potential of developing the computer acoustic keyboard.Furthermore,for the purpose of testing its effect on actual near-field source localization,we organize three experiments for acoustic keyboard characters localization.The experiment results show that the positioning error of TRM algorithm is less than 1 cm within a provided acoustic keyboard region.This will provide theoretical guidance for the further research of computer acoustic keyboard.展开更多
The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning s...The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.展开更多
We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo...We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo- cusing occurs in the vicinity of one hydrophone when Green's function (GF) is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom. We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m distance in the Shallow Water '06 experiment. After realizing the TRM process, sound speed and density in the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is inherently environmentally friendly and low-cost.展开更多
The extraction of the weakly excited anti-symmetric Lamb wave from a submerged thin spherical shell backscattering is very difficult if the carrier frequency of the incident short tone burst is not at its frequency of...The extraction of the weakly excited anti-symmetric Lamb wave from a submerged thin spherical shell backscattering is very difficult if the carrier frequency of the incident short tone burst is not at its frequency of greatest enhancement. Based on a single channel iterative time reversal technique, a method for isolating the subsonic anti-symmetric Lamb wave is proposed in this paper. The approach does not depend on the form function of a thin shell and any other priori knowledge, and it is also robust in the presence of some stochastic noise. Both theoretical and numerical results show that the subsonic anti-symmetric Lamb wave can be identified, even when the carrier frequency of the incident short tone burst is away from the frequency of greatest enhancement. The phenomenon may also be observed even in the case that the subsonic anti-symmetric Lamb wave is submerged in the noise, other than the case with the Signal to Noise Ratio being less than 10 d B, when the amplitude of the noise is comparable with the specular wave. In this paper, each iteration process contains a traditional transmission and time reversal transmission steps. The two steps can automatically compensate the time delay of the subsonic anti-symmetric Lamb wave relative to the specular wave and within-mode dispersion in the forward wave propagation.展开更多
In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may ca...In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.展开更多
Reliable, with high data rate, acoustic communication in time-valTing, multipath shallow water environment is a hot research topic recently. Passive time reversal communication has shown promising results in improveme...Reliable, with high data rate, acoustic communication in time-valTing, multipath shallow water environment is a hot research topic recently. Passive time reversal communication has shown promising results in improvement of the system performance. In multiuser environment, the system performance is significantly degraded due to the interference among different users. Passive time reversal can reduce such interference by minimizing the cross-correlated version of channel impulse response among users, which can be realized by the well-separated users in depth. But this method also has its shortcomings, even with the absence of relative motion, the minimization sometimes may be impossible because of the time-varying environment. Therefore in order to avoid the limitation of minimizing the cross-correlated channel function, an approach of passive time reversal based on space-time block coding (STBC) is presented in this paper. In addition, a single channel equalizer is used as a pest processing technique to reduce the residual symbol interference. Experimental results at 13 kHz with 2 kHz bandwidth demonstrate that this method has better performance to decrease bit error rate and improve signal to noise ratio, compared with passive time reversal alone or passive time reversal combined with equalization.展开更多
This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretica...This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative tim...In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.展开更多
A new method of radar netting simulation with hardware-in-the-loop (HWIL) is introduced based on the idea of time reversal. It is the high authenticity, low cost and great simplification in design that the method does...A new method of radar netting simulation with hardware-in-the-loop (HWIL) is introduced based on the idea of time reversal. It is the high authenticity, low cost and great simplification in design that the method does provide. Along with several paragraphs about the vital features, the model of probability is explained in an analytical way to find out the feasibility of this method.展开更多
The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high ...The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high peak power.A time-reversed pulse-compression method in a single channel has high pulse compression gain.However,single channel pulse compression can only generate limited gain.This paper proposes a novel TR power-combination method in a multichannel TRC to obtain higher peak power based on TR pulse-compression theory.First,the TR power-combination model is given,and the crosstalk properties of the associated channel and the influence of the reversal performance are studied.Then,the power-combination performances for the TR pulse compression,such as combined signal to noise ratio(SNR)and combined compression gain,are analyzed by numerical simulation and experimental methods.The results show that the proposed method has obvious advantages over pulse-compression methods using a single channel cavity,and is more convenient for power combination.展开更多
In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To un...In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.展开更多
This paper presents a detailed analysis of the effects of noise (reverberation) on the focusing performance of de-composition of the time reversal operator (DORT) in a noise-limited case and in a reverberation-limited...This paper presents a detailed analysis of the effects of noise (reverberation) on the focusing performance of de-composition of the time reversal operator (DORT) in a noise-limited case and in a reverberation-limited case, respectively. Quantitative results obtained from simulations and experiments are presented. The results show the DORT method can be effi-ciently applied to target detection with enough source level to yield significant backscatter. For a target placed on the bottom, the influence of the reverberation on the focusing performance is slight. However, distinguishing between a target and constant backscattering returning from strong local clutter on the bottom (false alarms) needs further research.展开更多
Acoustic wave time reversal self-focusing in underwater waveguide is studied. The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinite fluid medium and a shallow fluid layer ...Acoustic wave time reversal self-focusing in underwater waveguide is studied. The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinite fluid medium and a shallow fluid layer placed on a hard half-infinite solid medium, respectively. The ray approach method is adopted to study the far field of the acoustic field in theory, and the ultrasonic experiments have been carried out in laboratory to model the underwater waveguide. It is shown by theoretical and experimental results that the focusing gain can be improved by 12 dB or more.展开更多
A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly foc...A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources.展开更多
The time reversal is an unique self-adaptive focusing technique important to ultrasonic imaging. In this paper, the principle and the analytic expression of the ultrasound field in the realization of time reversal du...The time reversal is an unique self-adaptive focusing technique important to ultrasonic imaging. In this paper, the principle and the analytic expression of the ultrasound field in the realization of time reversal during the presence of an interface between two media are presented. Experimental results of time reversal are given and found to agree with theoretical ones.展开更多
基金supported by the Regional Joint Fund for Basic and Applied Basic Research of Guangdong Province(2019B1515120009)the Defense Basic Scientific Research Program(61424132005).
文摘In this paper,parameter estimation of linear frequency modulation(LFM)signals containing additive white Gaussian noise is studied.Because the center frequency estimation of an LFM signal is affected by the error propagation effect,resulting in a higher signal to noise ratio(SNR)threshold,a parameter estimation method for LFM signals based on time reversal is proposed.The proposed method avoids SNR loss in the process of estimating the frequency,thus reducing the SNR threshold.The simulation results show that the threshold is reduced by 5 dB compared with the discrete polynomial transform(DPT)method,and the root-mean-square error(RMSE)of the proposed estimator is close to the Cramer-Rao lower bound(CRLB).
基金National Natural Science Foundation of China(Grant No.62071433)National Key R&D Program of China(Grant No.2022YFC3005002)。
文摘Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection,particularly for micro-sized pinholes less than 1 mm in diameter.This study proposes a new micro-sized pinhole inspection method based on segmented time reversal(STR)and high-order modes cluster(HOMC)Lamb waves.First,the principle of defect echo enhancement using STR is introduced.Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths.The parameters of the segment window are discussed in detail.The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth.Moreover,the segment window location and width(5-10 times width of the conventional excitation signal)did not affect the detection sensitivity.The combination of low-power and STR is more conducive to detection in different environments,indicating the robustness of the proposed method.Compared with conventional ultrasonic guided wave inspection methods,the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.
文摘In this paper, a new method of time reversal for defect diagnosis of concealed structure has been proposed based on the detecting technique of structure acoustic wave and the theory of time reversal. The time reversal recurrence formula for detecting the acoustic wave speed constitution of concealed structures with bilevel asynchronous test has been established. The wave speed constitution can be reconstructed in 2 D graticule form by means of this method. The result of model test shows the method is valid.
文摘In order to develop the acoustic keyboard for Personal Computer(PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing property of Time Reversal Mirror(TRM) is introduced,and then a mathe-matical model of microphone array receiving typing sound is established according to the realization of acoustic keyboard from which the TRM localization algorithm is carried out.The results through computer simulation show that the localization Root Mean Square Error(RMSE) performance of the algorithm can reach 10-3,which demonstrates that the algorithm possesses a high accuracy for the actual near-field acoustic source localization,with potential of developing the computer acoustic keyboard.Furthermore,for the purpose of testing its effect on actual near-field source localization,we organize three experiments for acoustic keyboard characters localization.The experiment results show that the positioning error of TRM algorithm is less than 1 cm within a provided acoustic keyboard region.This will provide theoretical guidance for the further research of computer acoustic keyboard.
基金Supported by the National Defense Basic Foundation of China B2420710007
文摘The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo- cusing occurs in the vicinity of one hydrophone when Green's function (GF) is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom. We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m distance in the Shallow Water '06 experiment. After realizing the TRM process, sound speed and density in the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is inherently environmentally friendly and low-cost.
基金supported by the National Natural Science Foundation of China (46976019)the open project of the State Key Laboratory of Acoustics, Chinese Academy of Sciences (SKLA201202)
文摘The extraction of the weakly excited anti-symmetric Lamb wave from a submerged thin spherical shell backscattering is very difficult if the carrier frequency of the incident short tone burst is not at its frequency of greatest enhancement. Based on a single channel iterative time reversal technique, a method for isolating the subsonic anti-symmetric Lamb wave is proposed in this paper. The approach does not depend on the form function of a thin shell and any other priori knowledge, and it is also robust in the presence of some stochastic noise. Both theoretical and numerical results show that the subsonic anti-symmetric Lamb wave can be identified, even when the carrier frequency of the incident short tone burst is away from the frequency of greatest enhancement. The phenomenon may also be observed even in the case that the subsonic anti-symmetric Lamb wave is submerged in the noise, other than the case with the Signal to Noise Ratio being less than 10 d B, when the amplitude of the noise is comparable with the specular wave. In this paper, each iteration process contains a traditional transmission and time reversal transmission steps. The two steps can automatically compensate the time delay of the subsonic anti-symmetric Lamb wave relative to the specular wave and within-mode dispersion in the forward wave propagation.
基金State Natural Science Foundation (49834002) and the science foundation of HUST (J151005).
文摘In this paper, the time reversal processes of impulse response of crust are simulated by means of a dynamical finite element method (DFEM). The results indicate that a small undulating load during a long period may cause a focused brevity impact in a chaos-response system. The physical principle for this phenomenon is that the wave interferes or multiples superposition. Based on this knowledge, a new view toward the mechanism for preparing and triggering an earthquake is proposed. Finally, an interpretation of crust response to the sea tides is given.
基金supported by the National Natural Science Foundation of China(Grant Nos.60772094 and 60872066)
文摘Reliable, with high data rate, acoustic communication in time-valTing, multipath shallow water environment is a hot research topic recently. Passive time reversal communication has shown promising results in improvement of the system performance. In multiuser environment, the system performance is significantly degraded due to the interference among different users. Passive time reversal can reduce such interference by minimizing the cross-correlated version of channel impulse response among users, which can be realized by the well-separated users in depth. But this method also has its shortcomings, even with the absence of relative motion, the minimization sometimes may be impossible because of the time-varying environment. Therefore in order to avoid the limitation of minimizing the cross-correlated channel function, an approach of passive time reversal based on space-time block coding (STBC) is presented in this paper. In addition, a single channel equalizer is used as a pest processing technique to reduce the residual symbol interference. Experimental results at 13 kHz with 2 kHz bandwidth demonstrate that this method has better performance to decrease bit error rate and improve signal to noise ratio, compared with passive time reversal alone or passive time reversal combined with equalization.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874110 and 10504020)Shanghai Leading Academic Discipline Project,China (Grant No. S30108)Science and Technology Commission of Shanghai Municipality,China(Grant No. 08DZ2231100)
文摘This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
基金Project supported by the Innovation Foundation of Chinese Academy of Sciences (Grant No. CXJJ-260)
文摘In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.
基金the Ministerial Level Advanced Research Foundation
文摘A new method of radar netting simulation with hardware-in-the-loop (HWIL) is introduced based on the idea of time reversal. It is the high authenticity, low cost and great simplification in design that the method does provide. Along with several paragraphs about the vital features, the model of probability is explained in an analytical way to find out the feasibility of this method.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFC2203503)。
文摘The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high peak power.A time-reversed pulse-compression method in a single channel has high pulse compression gain.However,single channel pulse compression can only generate limited gain.This paper proposes a novel TR power-combination method in a multichannel TRC to obtain higher peak power based on TR pulse-compression theory.First,the TR power-combination model is given,and the crosstalk properties of the associated channel and the influence of the reversal performance are studied.Then,the power-combination performances for the TR pulse compression,such as combined signal to noise ratio(SNR)and combined compression gain,are analyzed by numerical simulation and experimental methods.The results show that the proposed method has obvious advantages over pulse-compression methods using a single channel cavity,and is more convenient for power combination.
文摘In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.
基金Project supported by the National Natural Science Foundation of China (Nos. 60702022 and 60772094)the National Basic Re-search Program (973) of China (No. 5132103ZZT21B)
文摘This paper presents a detailed analysis of the effects of noise (reverberation) on the focusing performance of de-composition of the time reversal operator (DORT) in a noise-limited case and in a reverberation-limited case, respectively. Quantitative results obtained from simulations and experiments are presented. The results show the DORT method can be effi-ciently applied to target detection with enough source level to yield significant backscatter. For a target placed on the bottom, the influence of the reverberation on the focusing performance is slight. However, distinguishing between a target and constant backscattering returning from strong local clutter on the bottom (false alarms) needs further research.
基金This work was supported by the National Natural Science Foundation of China (19634050, 10134020).
文摘Acoustic wave time reversal self-focusing in underwater waveguide is studied. The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinite fluid medium and a shallow fluid layer placed on a hard half-infinite solid medium, respectively. The ray approach method is adopted to study the far field of the acoustic field in theory, and the ultrasonic experiments have been carried out in laboratory to model the underwater waveguide. It is shown by theoretical and experimental results that the focusing gain can be improved by 12 dB or more.
文摘A measuring method of the echo reduction of passive materials by using the time reversal(TR) technique is presented. To measure the echo reduction of a sample with this approach, the received signals are firstly focused according to the TR theory. Then, the sample is removed and the TR processing is again employed to realize the focus of the received signal.Finally, the echo reduction of the sample is evaluated with these focusing signals. Besides, to calibrate the measured echo reduction via the TR technique, a standard sample is employed to measure a constant coefficient that only depends on the measurement environment. An aluminum plate sample and a steel plate sample with the same size of 1.1 mxl.O m x0.005 m axe tested in a wave guide tank. The experimental results show that the calibrated values are well consistent with theoretical results under the free field at the measured frequency range of0.5-20 kHz. The relative errors of all the measured values are less than 10% and the values of the expanded uncertainty are less than 1.5 dB. The TR processing focuses the energy in spatial domain and temporal domain, so it can be used to measure the echo reduction of passive materials in the environments with reflections induced by boundaries and low frequency sources.
基金This project supported by National Natural Science Foundation of China and the President Foundationof Institute of Acoustics
文摘The time reversal is an unique self-adaptive focusing technique important to ultrasonic imaging. In this paper, the principle and the analytic expression of the ultrasound field in the realization of time reversal during the presence of an interface between two media are presented. Experimental results of time reversal are given and found to agree with theoretical ones.