In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,w...In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.展开更多
In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in term of the coefficients and the graininess function. We illustrate our results with an example.
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The resu...By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.展开更多
Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is imp...Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.展开更多
This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality techniq...This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality technique we present two new sufficient conditions which ensure that every solution of equations is oscillatory or converges to zero. The results obtained improve and complement some known results in the literature.展开更多
This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corres...This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).展开更多
Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend...Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend and improve some known theorems, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. At the end of this paper, we give an example to illustrate the main results.展开更多
In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point...In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.展开更多
The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the ex...The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the existence of at least one, two or 2n positive solutions. Furthermore, some examples are included to illustrate the main theorems.展开更多
For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research i...For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.展开更多
This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T w...This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.展开更多
Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation...Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation (1) by combinating the first approximate method and the second method of Lyapunov.展开更多
We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by ut...We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theorem.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillator...In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillatory solutions for general and which means that we allow oscillatory and . We give some examples to illustrate the obtained results.展开更多
We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia...We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.展开更多
We establish some new criteria for the oscillation of even order nonlinear dynamic equation. We study the case of strongly super-linear and the case of strongly sub-linear subject to various conditions.
By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral del...By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.展开更多
基金supported by the Jiangxi Provincial Natural Science Foundation(20202BABL211003)the Science and Technology Project of Jiangxi Education Department(GJJ180354).
文摘In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.
文摘In this paper, we will establish some oscillation criteria for the higher order linear dynamic equation on time scale in term of the coefficients and the graininess function. We illustrate our results with an example.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
文摘By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.
文摘Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.
文摘This paper is concerned with the oscillatory properties of the third-order nonlinear delay dynamic equations of the form??on time scales , where ?is a quotient of odd positive integers. Applying the inequality technique we present two new sufficient conditions which ensure that every solution of equations is oscillatory or converges to zero. The results obtained improve and complement some known results in the literature.
文摘This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation x~?(t)-ax(t) = f(t), where a ∈ R^+. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka(Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstratio Math., 2018, 51: 198–210).
文摘Based on Riccati transformation and the inequality technique, we establish some new sufficient conditions for oscillation of the second-order neutral delay dynamic equations on time scales. Our results not only extend and improve some known theorems, but also unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. At the end of this paper, we give an example to illustrate the main results.
基金The NSF (11201109) of Chinathe NSF (10040606Q50) of Anhui Province+1 种基金Excellent Talents Foundation (2012SQRL165) of University of Anhui Provincethe NSF (2012kj09) of Heifei Normal University
文摘In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.
文摘The three-point boundary value problems of p-Laplacian dynamic equations on time scales are investigated. By using Krasnosel'skii's fixed-point theorem and fixed-point index theorem, criteria are achieved for the existence of at least one, two or 2n positive solutions. Furthermore, some examples are included to illustrate the main theorems.
文摘For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in?[1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both?T?+?and?T-.??Moreover, we also give the converse result that the linear systems have?an exponential dichotomy on both?T?+?andT-??then the associative operator is Fredholm on?T.
基金supported in part by the NNSF of China(10971231 and 11271379)
文摘This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.
文摘Consider the linear dynamic equation on time scales (1) where , ,?is a rd-continuous function, T is a time scales. In this paper, we shall investigate some results for the exponential stability of the dynamic Equation (1) by combinating the first approximate method and the second method of Lyapunov.
文摘We consider the nth order nonlinear differential equation on time scales subject to the right focal type two-point boundary conditions We establish a criterion for the existence of at least one positive solution by utilizing Krasnosel’skii fixed point theorem. And then, we establish the existence of at least three positive solutions by utilizing Leggett-Williams fixed point theorem.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
文摘In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillatory solutions for general and which means that we allow oscillatory and . We give some examples to illustrate the obtained results.
文摘We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.
基金supported by the National Natural Science Foundation of China(61374074)Natural Science Outstanding Youth Foundation of Shandong Province(JQ201119)Shandong Provincial Natural Science Foundation(ZR2012AM009,ZR2013AL003)
文摘We establish some new criteria for the oscillation of even order nonlinear dynamic equation. We study the case of strongly super-linear and the case of strongly sub-linear subject to various conditions.
文摘By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.