Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m...Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.展开更多
For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivati...For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t...In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out.展开更多
The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-i...The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.展开更多
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes...A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51835009).
文摘Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.
基金supported in part by the National Natural Science Foundation of China(62103319,62073053,61773396)。
文摘For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
基金supported by the Doctoral Research Fund of the Ministry of Education, China (Grant No.20040285008)Grant-in-Aid for Scientific Research (B), the Ministry of Education, Science, Sports andCulture, Japan, 2005 (Grant No. 17300228)
文摘In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50675209 InnovationFund for Outstanding Scholar of Henan Province under Grant No. 0621000500
文摘The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant Nos. 2006AA09Z226 and 2012AA091104)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (Grant No. CHD2011JC151)
文摘A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.