Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu...Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.展开更多
The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is pr...The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia.展开更多
The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be add...The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be addressed: one is the time-consuming process of solving the transcendental equation at each time step, and the other is the difculty of controlling the instability problem due to the time-varying transfer matrix. In view of that, an improved technique is proposed in this paper to resolve these two problems. In the improved technique, a de-Dopplerization method in the time-domain rotating reference frame is frst applied to eliminate the Doppler efect caused by the source rotation in the measured pressure signals, and then the restored pressure signals without the Doppler efect are used as the inputs of the time-domain stationary equivalent source method to locate and quantify sound sources. Compared with the original technique, the improved technique can avoid solving the transcendental equation at each time step, and facilitate the treatment of the instability problem because the transfer matrix does not change with time. Numerical simulation and experimental results show that the improved technique can eliminate the Doppler efect efectively, and then localize and quantify the rotating nonstationary or broadband sources accurately. The results also demonstrate that the improved technique can guarantee a more stable reconstruction and compute more efciently than the original one.展开更多
Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the tradit...Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.展开更多
Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and ...Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge...An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.展开更多
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of t...To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.展开更多
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat...In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are as...An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.展开更多
The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary...The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary eruptions in the solar system,pulsars,transient sources,and reionization of the early universe.This article introduces the HF-VHF frequency band multifunctional radio astronomical terminal system based on a dual-channel high-speed acquisition board with a frequency observation range of 1-250 MHz and a sampling rate of 500 Msps(Mega samples per second).The maximum quantization bit of the system is 14 bits,with a maximum time resolution of 0.1 s and a maximum spectral resolution of 16 kHz.The system combines spectral analysis of solar radio signals and recording of time-domain data of signals interfering with long baselines,and adopts a server-client separation mode to allow remote operation with separate permissions.It is used in the China-Malaysia joint astronomy project,which can carry out single-site observation of solar radio signals as well as interferometric observation of signals from multiple sites.展开更多
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ...Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.展开更多
This paper investigates the ability of the depolarization degree, derived from the characteristic polarization states at the resonant frequency set, to identify corner or swept, i.e. dihedral, changes in same-class ta...This paper investigates the ability of the depolarization degree, derived from the characteristic polarization states at the resonant frequency set, to identify corner or swept, i.e. dihedral, changes in same-class targets by a metallic wire example. A well-estimated depolarization degree requires a robust extraction of the fundamental target resonance set in two orthogonal sets of fully co-polarized and cross-polarized polarization channels, then finding the null polarization states using the Lagrangian method. Such depolarization degree per resonance mode has the potential to form a robust feature set because it is relatively less sensitive to onset ambiguity, invariant to rotation, and could create a compact, recognizable, and separable distribution in the proposed feature space. The study was limited to two targets with two swept changes of fifteen degrees within normal incidence;under a supervised learning approach, the results showed that the identification rate converging to upper-bound (100%) for a signal-to-noise ratio above 20 dB and lower-bound around (50%) below −10 dB.展开更多
Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz ...Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz waves can be used to qualitatively identify food additives containing nitrogen elements.Analytic hierarchy process(AHP)was originally used to solve evaluation-type problems,and this paper introduces it into the field of terahertz spectral qualitative analysis,proposes a terahertz time-domain spectral qualitative identification method combined with analytic hierarchy process,and verifies the feasibility of the method by taking four common food additives(xylitol,L-alanine,sorbic acid,and benzoic acid)and two illegal additives(melamine,and Sudan Red No.I)as the objects of study.Firstly,the collected terahertz time-domain spectral data were pre-processed and transformed into a data set consisting of peaks,peak positions,peak numbers and overall trends;then,the data were divided into comparison and test sets,and a qualitative additive identification model incorporating analytic hierarchy process was constructed and parameter optimisation was performed.The results showed that the qualitative identification accuracies of additives based on single factors,i.e.,overall trend,peak value,peak position,and peak number,were 80.23%,70.93%,67.44%,and 40.70%,respectively,whereas the identification accuracy of the analytic hierarchy process qualitative identification method based on multi-factors could be improved to 92.44%.In addition,the fuzzy characterisation of the absorption spectrum data was binarised in the data pre-processing stage and used as the base data for the overall trend,and the recognition accuracy was improved to 94.19%by combining the fuzzy characterisation method of such data with the hierarchical analysis qualitative recognition model.The results show that it is feasible to use terahertz technology to identify different varieties of additives,and this paper constructs a hierarchical analytical qualitative model with better effect,which provides a new means for food additives detection,and the method is simple in steps,with a small demand for samples,which is suitable for the rapid detection of small samples.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotrop...Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.展开更多
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the l...A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.展开更多
Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating ra...Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.展开更多
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedur...A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.展开更多
基金Major Program of the National Natural Science Foundation of China under Grant No.52192675 and the 111 Project of China under Grant No.D21001。
文摘Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.
基金This work was supported by the National Natural Science Foundation of China(No.11872212)and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875147,12174082,51675149)。
文摘The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be addressed: one is the time-consuming process of solving the transcendental equation at each time step, and the other is the difculty of controlling the instability problem due to the time-varying transfer matrix. In view of that, an improved technique is proposed in this paper to resolve these two problems. In the improved technique, a de-Dopplerization method in the time-domain rotating reference frame is frst applied to eliminate the Doppler efect caused by the source rotation in the measured pressure signals, and then the restored pressure signals without the Doppler efect are used as the inputs of the time-domain stationary equivalent source method to locate and quantify sound sources. Compared with the original technique, the improved technique can avoid solving the transcendental equation at each time step, and facilitate the treatment of the instability problem because the transfer matrix does not change with time. Numerical simulation and experimental results show that the improved technique can eliminate the Doppler efect efectively, and then localize and quantify the rotating nonstationary or broadband sources accurately. The results also demonstrate that the improved technique can guarantee a more stable reconstruction and compute more efciently than the original one.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3200100)the National Natural Science Foundation of China(Grant No.61575131)。
文摘Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.
基金supported by the National Natural Science Foundation of China (Grant No. 40974039)High-Tech Research and Development Program of China (Grant No.2006AA06205)Leading Strategic Project of Science and Technology, Chinese Academy of Sciences (XDA08020500)
文摘Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金supported by Chinese National Programs for Fundamental Research and Development(No.2012CB416605)the National Natural Science Foundation of China(No.41174090)Development Project of National Key Scientific Equipment(No.ZDYZ2012-1-05-04)
文摘An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.
基金supported by the National High Technology Research and Development Program (863 Program)(2009AA06Z108)
文摘To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.
基金the National Natural Science Foundation of China(No.U20A20328).
文摘In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金Fundamental Research Funds for the Central Universities under Grant No.2682022CX072the Research and Development Plan in Key Areas of Guangdong Province under Grant No.2020B0202010008。
文摘An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations.The concentrated plastic hinges,described by the Bouc-Wen model,are assumed to occur at the two ends of a linear-elastic beam element.The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations.Then,the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems.To solve the equation of motion for equivalent linear systems,the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency.Finally,the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology,which provides a new way of obtaining the equivalent linear systems at different time instants.Based on the explicit time-domain method,the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency.Numerical examples indicate that the proposed approach has high computational efficiency,and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.
基金supported by National Natural Science Foundation of China(U2031133)National Key Research and Development Program of China(11941003)+4 种基金Applied Basic Research Program of Yunnan Province(2019FB009)Basic Research Program of Yunnan Province(202301AT070325)Square Kilometer Array(SKA)Project of the Ministry of Science and Technology of China(2020SKA0110202)International Partnership Program of the Chinese Academy of Sciences(114A11KYSB20200001)Kunming Municipal Foreign(International)Cooperation Base Project(GHJD-2021022).
文摘The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary eruptions in the solar system,pulsars,transient sources,and reionization of the early universe.This article introduces the HF-VHF frequency band multifunctional radio astronomical terminal system based on a dual-channel high-speed acquisition board with a frequency observation range of 1-250 MHz and a sampling rate of 500 Msps(Mega samples per second).The maximum quantization bit of the system is 14 bits,with a maximum time resolution of 0.1 s and a maximum spectral resolution of 16 kHz.The system combines spectral analysis of solar radio signals and recording of time-domain data of signals interfering with long baselines,and adopts a server-client separation mode to allow remote operation with separate permissions.It is used in the China-Malaysia joint astronomy project,which can carry out single-site observation of solar radio signals as well as interferometric observation of signals from multiple sites.
文摘Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.
文摘This paper investigates the ability of the depolarization degree, derived from the characteristic polarization states at the resonant frequency set, to identify corner or swept, i.e. dihedral, changes in same-class targets by a metallic wire example. A well-estimated depolarization degree requires a robust extraction of the fundamental target resonance set in two orthogonal sets of fully co-polarized and cross-polarized polarization channels, then finding the null polarization states using the Lagrangian method. Such depolarization degree per resonance mode has the potential to form a robust feature set because it is relatively less sensitive to onset ambiguity, invariant to rotation, and could create a compact, recognizable, and separable distribution in the proposed feature space. The study was limited to two targets with two swept changes of fifteen degrees within normal incidence;under a supervised learning approach, the results showed that the identification rate converging to upper-bound (100%) for a signal-to-noise ratio above 20 dB and lower-bound around (50%) below −10 dB.
基金funded by Key Technology Tackling Programme of Inner Mongolia,grant number2021GG0361funded by Basic Research Operating Costs of Colleges and Universities Directly Under the Inner Mongolia Autonomous Region Project。
文摘Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz waves can be used to qualitatively identify food additives containing nitrogen elements.Analytic hierarchy process(AHP)was originally used to solve evaluation-type problems,and this paper introduces it into the field of terahertz spectral qualitative analysis,proposes a terahertz time-domain spectral qualitative identification method combined with analytic hierarchy process,and verifies the feasibility of the method by taking four common food additives(xylitol,L-alanine,sorbic acid,and benzoic acid)and two illegal additives(melamine,and Sudan Red No.I)as the objects of study.Firstly,the collected terahertz time-domain spectral data were pre-processed and transformed into a data set consisting of peaks,peak positions,peak numbers and overall trends;then,the data were divided into comparison and test sets,and a qualitative additive identification model incorporating analytic hierarchy process was constructed and parameter optimisation was performed.The results showed that the qualitative identification accuracies of additives based on single factors,i.e.,overall trend,peak value,peak position,and peak number,were 80.23%,70.93%,67.44%,and 40.70%,respectively,whereas the identification accuracy of the analytic hierarchy process qualitative identification method based on multi-factors could be improved to 92.44%.In addition,the fuzzy characterisation of the absorption spectrum data was binarised in the data pre-processing stage and used as the base data for the overall trend,and the recognition accuracy was improved to 94.19%by combining the fuzzy characterisation method of such data with the hierarchical analysis qualitative recognition model.The results show that it is feasible to use terahertz technology to identify different varieties of additives,and this paper constructs a hierarchical analytical qualitative model with better effect,which provides a new means for food additives detection,and the method is simple in steps,with a small demand for samples,which is suitable for the rapid detection of small samples.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金financially supported by National Nonprofit institute Research Grant of IGGE(Nos.AS2017J06,AS2017Y04,and AS2016J10)Survey on coastal area for airborne magnetic method of UNV in Jiangsu(No.DD20160151-03)+3 种基金Key National Research Project of China(No.2017YFC0601900)Key Program of National Natural Science Foundation of China(No.41530320)Natural Science Foundation(No.41274121)China Natural Science Foundation for Young Scientists(No.41404093)
文摘Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.
基金the National Natural Science Foundation of China(50478014)the National 973 Program(2007CB714200)the Beijing Natural Science Foundation(8061003).
文摘A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805214)the Fundamental Research Funds for the Central Universities,China(Grant No.2652017142)
文摘Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.
基金The project was financially supported by the National Natural Science Foundation of China under the Grant No. 19732004 the National Science Fund for Distinguished Young Scholars under the Grant No. 50029002
文摘A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.