太赫兹时域光谱(Terahertz time domain spectroscopyr,THz-TDS)是基于飞秒超快激光的远红外波段光谱测量新技术。我们利用该技术对苯甲酸及其单甲基取代物进行测量,得到了它们在0.1-2.0THz波段的吸收谱图。4种物质的吸收谱有明显的特征...太赫兹时域光谱(Terahertz time domain spectroscopyr,THz-TDS)是基于飞秒超快激光的远红外波段光谱测量新技术。我们利用该技术对苯甲酸及其单甲基取代物进行测量,得到了它们在0.1-2.0THz波段的吸收谱图。4种物质的吸收谱有明显的特征,可以将这几种化合物区分开来,这表明THz-TDS技术可以分辨化合物结构上的微小差异,可以应用于物质检测与分析。展开更多
Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating ra...Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.展开更多
The normal temperature corrosion of VC coating on the substrate of Cr12MoV prepared by TD process was tested in 5% NaCl aqueous solution, its surface morphologies and corrosion components after salt spray were observe...The normal temperature corrosion of VC coating on the substrate of Cr12MoV prepared by TD process was tested in 5% NaCl aqueous solution, its surface morphologies and corrosion components after salt spray were observed with SEM and EDS, respectively, and the effects of salt spray on micro-structures of VC coating were analyzed. Moreover, the invalidation mechanism of VC coating after salt spray and its effect on substrate material were discussed. The experimental results shown that the uniformity and integrity of VC coating surface are destroyed by salt spray for 120 h, a large number of the pits are produced on the coating surface, and the coating falls off, which speeds corrosion breakage of its substrate; the oxidated film on its surface becomes rougher, broken and discontinuous, and falls off easily, which reduce the ability of resistance salt spray; the failure modes of VC coating after salt spray are expressed with falling off of oxidated film, stress concentration and pore effect and so on, the corrosion breakage of oxidated film is the corrosion result of deoxidization corrosion from oxygen and HCl produced by NaCl and vapor.展开更多
We report a broadband terahertz time-domain spectroscopy(THz-TDS)which enables twenty vibrational modes of adenosine nucleoside to be resolved in a wide frequency range of 1-20 THz.The observed spectroscopic features ...We report a broadband terahertz time-domain spectroscopy(THz-TDS)which enables twenty vibrational modes of adenosine nucleoside to be resolved in a wide frequency range of 1-20 THz.The observed spectroscopic features of adenosine are in good agreement with the published spectra obtained using Fourier transform infrared spectroscopy(FTIR)and Raman spectroscopy.This much extended bandwidth leads to enhanced material characterization capability as it provides spectroscopic information on both intra-and inter-molecular vibrations.In addition,we also report a low-cost frequency modulation continuous wave(FMCW)imaging system which has a fast measurement speed of 40000 waveforms per second.Cross-sectional imaging capability through cardboard has also been demonstrated using its excellent penetration capability at a frequency range of 76-81 GHz.We anticipate that the integration of these two complementary imaging technologies would be highly desirable for many real-world applications because it provides both spectroscopic discrimination and penetration capabilities in a single instrument.展开更多
A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect ...A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing.展开更多
This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applyi...This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applying the Bruggeman effective medium theory. The experimental data are consistent with the Drude-Smith model of conductivity in the range of 0.2 1.5 THz. The results demonstrate that carriers become localized with a backscattering behaviour in small-size nanostructures. In addition, the time constant for the carrier scattering is obtained and is only 64.3 fs due to increased electron interaction with interfaces and grain boundaries.展开更多
This paper reports a new way to detect the enhanced transmission of a THz electromagnetic wave through an Ag/Ag2O layer by THz-TDS (time-domain spectroscopy). As the THz beam illuminates the sub-wavelength Ag partic...This paper reports a new way to detect the enhanced transmission of a THz electromagnetic wave through an Ag/Ag2O layer by THz-TDS (time-domain spectroscopy). As the THz beam illuminates the sub-wavelength Ag particles gained by Ag2O thermal decomposition, the evanescent wave is generated. The evanescent wave is coupled by a 500μm-GaAs substrate, which attaches behind the Ag/Ag2O layer, and then it transmits to the far field to be detected. The experimental results indicate that the transmitting amplitude is enhanced, as well as the frequent shifting and spectra broadening.展开更多
The terahertz time-domain spectroscopy (THz-TDS) system and the related technology and the applications in Capital Normal University are presented. The most often used THz-TDS system as a spectroscopic measurement ...The terahertz time-domain spectroscopy (THz-TDS) system and the related technology and the applications in Capital Normal University are presented. The most often used THz-TDS system as a spectroscopic measurement setup in our lab is introduced in detail, including the THz radiation source, the THz detection method and its measurement, and the control system. THz spectra of various materials is summarized and discussed. These materials include but not limited to two kinds of typical matter-the illegal drugs and explosives. The biological macro-molecules, cosmetics and fine chemical materials, edible pigments and food additives, homocysteic acid and related compounds, heavy ions in soil, Chinese medicines, tobacco and crops, oil and chemical products, carbon nanotubes, superconductors, and various semiconductors and their heterojunctions, are presented. THz emissions from the InAs and InN semiconductors surface are compared. THz spectral investigation of metallic mesh structures is summarized. Finally, an outlook of THz spectroscopic applications is given.展开更多
Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the tradit...Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.展开更多
In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivativ...In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.展开更多
Terahertz time-domain spectroscopy(THz-TDS)was utilized to investigate the solid-state reaction between L(+)-Tartaric acid and sodium hydrogen carbonate.Solid sodium hydrogen L(+)-tartrate monohydrate was synthesized ...Terahertz time-domain spectroscopy(THz-TDS)was utilized to investigate the solid-state reaction between L(+)-Tartaric acid and sodium hydrogen carbonate.Solid sodium hydrogen L(+)-tartrate monohydrate was synthesized efficiently by mechanical grinding,which is particularly sustainable and environmentally benign.Distinct THz absorptions were observed for pure reactants and the proposed product.The reaction process could be clearly visualized by THz spectral patterns of the reaction mixtures at different grinding time.The observed results were further confirmed by synchrotron radiation X-ray powder diffraction(SRXRPD)and Fourier transform infrared (FT-IR)spectroscopy.The study demonstrates that THz-TDS is an effective novel tool to monitor solid-state reactions in pharmaceutical industry.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(dipheny...Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamin}were synthesized using a one-pot method.X-ray crystallography was used to elucidate their crystal structures and photophysical properties.A series of characterization tests including elemental analysis,NMR,FT-IR,UV-Vis absorption spectroscopy,fluorescence spectroscopy,thermal gravimetric analysis and terahertz time-domain spectroscopy(THz-TDS)were used to further investigate their properties.The results show that complex 1 structure is mononuclear containing two solvent molecules per unit cell,while complex 2 structure is binuclear containing two metal centers per unit cell.According to photophysical properties and density functional theory(DFT)calculations,their luminescence properties can be attributed to metal-to-ligand charge transfer(MLCT).Both complexes have a unique stability,which is confirmed by thermal gravimetric analysis.展开更多
Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz ...Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz waves can be used to qualitatively identify food additives containing nitrogen elements.Analytic hierarchy process(AHP)was originally used to solve evaluation-type problems,and this paper introduces it into the field of terahertz spectral qualitative analysis,proposes a terahertz time-domain spectral qualitative identification method combined with analytic hierarchy process,and verifies the feasibility of the method by taking four common food additives(xylitol,L-alanine,sorbic acid,and benzoic acid)and two illegal additives(melamine,and Sudan Red No.I)as the objects of study.Firstly,the collected terahertz time-domain spectral data were pre-processed and transformed into a data set consisting of peaks,peak positions,peak numbers and overall trends;then,the data were divided into comparison and test sets,and a qualitative additive identification model incorporating analytic hierarchy process was constructed and parameter optimisation was performed.The results showed that the qualitative identification accuracies of additives based on single factors,i.e.,overall trend,peak value,peak position,and peak number,were 80.23%,70.93%,67.44%,and 40.70%,respectively,whereas the identification accuracy of the analytic hierarchy process qualitative identification method based on multi-factors could be improved to 92.44%.In addition,the fuzzy characterisation of the absorption spectrum data was binarised in the data pre-processing stage and used as the base data for the overall trend,and the recognition accuracy was improved to 94.19%by combining the fuzzy characterisation method of such data with the hierarchical analysis qualitative recognition model.The results show that it is feasible to use terahertz technology to identify different varieties of additives,and this paper constructs a hierarchical analytical qualitative model with better effect,which provides a new means for food additives detection,and the method is simple in steps,with a small demand for samples,which is suitable for the rapid detection of small samples.展开更多
The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to it...The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.展开更多
In the present work, we have studied the temporal evolution of aluminum alloy plasma produced by the fundamental (1064 nm) of a Q-switched Nd:YAG laser by placing the target material in air at atmospheric pressure. Th...In the present work, we have studied the temporal evolution of aluminum alloy plasma produced by the fundamental (1064 nm) of a Q-switched Nd:YAG laser by placing the target material in air at atmospheric pressure. The four Al I-neutral lines at 308.21, 309.27, 394.40 and 369.15 nm as well as Al II-ionic lines at 281.61, 385.64 and 466.30 nm are used for the determination of the electron temperature Te using Saha-Boltzmann plot method. The neutral aluminum lines were found to suffer from optical thickness which manifested itself on the form of scattered points around the Saha-Boltzmann line. The isolated optically thin hydrogen Hα-line at 656.27 nm appeared in the spectra under the same experimental conditions was used to correct the Al I-lines which contained some optical thickness. The measurements were repeated at different delay times ranging from 1 to 5 μs. The comparison between the deduced electron temperatures from aluminum neutral lines before correction against the effect self-absorption to that after correction revealed a precise value in temperature. The results sure that, in case of the presence of self-absorption effect the temperature varies from (1.4067 - 1.2548 eV) as the delay time is varied from 0 to 5 μs. Whereas, in the case of repairing against the effect, it varies from (1.2826 - 0.8961 eV) for the same delay time variation.展开更多
Terahertz (THz) radiation, whose frequency ranges from 0.1 THz to 10.0 THz, has rich science, but limited technology. It has long been considered the last remaining scientific gap in the electromagnetic spectrum. Fa...Terahertz (THz) radiation, whose frequency ranges from 0.1 THz to 10.0 THz, has rich science, but limited technology. It has long been considered the last remaining scientific gap in the electromagnetic spectrum. Far from being fully exploited, it offers great opportunities in science, innovation, new technology, and potential applications. THz science and technology enables fundamental research directly impact our lives, from industrial quality control,展开更多
In order to study stream sediments in the terahertz range, we have measured six reference stream sediment samples by terahertz time-domain spectroscopy (THz-TDS). We obtained the absorption coefficients and refractive...In order to study stream sediments in the terahertz range, we have measured six reference stream sediment samples by terahertz time-domain spectroscopy (THz-TDS). We obtained the absorption coefficients and refractive indexes. By analyzing the spectra, we got different drops in amplitude and delays in time. The absorption and refractive properties of samples changed with its components and types. In addition, we also found there was a nearly linear relationship between the absorption coefficient and the frequency. We calculated the slope value (K) of each sample by linear fitting, and find the K was corresponding to the contents of the samples. The results showed THz-TDS was an effective method to the analysis of stream sediments.展开更多
In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properti...In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.展开更多
文摘太赫兹时域光谱(Terahertz time domain spectroscopyr,THz-TDS)是基于飞秒超快激光的远红外波段光谱测量新技术。我们利用该技术对苯甲酸及其单甲基取代物进行测量,得到了它们在0.1-2.0THz波段的吸收谱图。4种物质的吸收谱有明显的特征,可以将这几种化合物区分开来,这表明THz-TDS技术可以分辨化合物结构上的微小差异,可以应用于物质检测与分析。
基金Project supported by the National Natural Science Foundation of China(Grant No.61805214)the Fundamental Research Funds for the Central Universities,China(Grant No.2652017142)
文摘Copper sulfate pentahydrate is investigated by terahertz time-domain spectroscopy. It is shown that the terahertz absorption coefficients are correlated with the particle size of the samples, as well as the heating rates of the ambient temperature. Furthermore, the water molecules of copper sulfate pentahydrate can be quantitatively characterized due to the high sensitivity of the terahertz wave to water molecules. Based on such results, the status of water incorporated in mineral opal is also characterized using terahertz time-domain spectroscopy. It indicates that terahertz technology can be considered as an efficient method to detect the dehydration of minerals.
基金Funded by the Foundation for Applied Basic Research of Changzhou City, China (CJ20110019)the Innovation Program of Graduated Student of Jiangsu Province(XM10-243)
文摘The normal temperature corrosion of VC coating on the substrate of Cr12MoV prepared by TD process was tested in 5% NaCl aqueous solution, its surface morphologies and corrosion components after salt spray were observed with SEM and EDS, respectively, and the effects of salt spray on micro-structures of VC coating were analyzed. Moreover, the invalidation mechanism of VC coating after salt spray and its effect on substrate material were discussed. The experimental results shown that the uniformity and integrity of VC coating surface are destroyed by salt spray for 120 h, a large number of the pits are produced on the coating surface, and the coating falls off, which speeds corrosion breakage of its substrate; the oxidated film on its surface becomes rougher, broken and discontinuous, and falls off easily, which reduce the ability of resistance salt spray; the failure modes of VC coating after salt spray are expressed with falling off of oxidated film, stress concentration and pore effect and so on, the corrosion breakage of oxidated film is the corrosion result of deoxidization corrosion from oxygen and HCl produced by NaCl and vapor.
基金Project supported by the Royal Society and Natural Science Foundation of China(NSFC)International Exchanges Cost Share(IEC\NSFC\181415).
文摘We report a broadband terahertz time-domain spectroscopy(THz-TDS)which enables twenty vibrational modes of adenosine nucleoside to be resolved in a wide frequency range of 1-20 THz.The observed spectroscopic features of adenosine are in good agreement with the published spectra obtained using Fourier transform infrared spectroscopy(FTIR)and Raman spectroscopy.This much extended bandwidth leads to enhanced material characterization capability as it provides spectroscopic information on both intra-and inter-molecular vibrations.In addition,we also report a low-cost frequency modulation continuous wave(FMCW)imaging system which has a fast measurement speed of 40000 waveforms per second.Cross-sectional imaging capability through cardboard has also been demonstrated using its excellent penetration capability at a frequency range of 76-81 GHz.We anticipate that the integration of these two complementary imaging technologies would be highly desirable for many real-world applications because it provides both spectroscopic discrimination and penetration capabilities in a single instrument.
基金National defense technical basic research project,Terahertz detection technology and application research on ceramic matrix composites(JSZL2015411C002)
文摘A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing.
基金Project supported by the Research Foundation of the State Ethnic Affairs Commission of People’s Repulic of China (Grant No. 09ZY012)the National Natural Science Foundation of China (Grant No. 10904176)+1 种基金the "Project 985"the "Project 211" of Minzu University of China
文摘This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applying the Bruggeman effective medium theory. The experimental data are consistent with the Drude-Smith model of conductivity in the range of 0.2 1.5 THz. The results demonstrate that carriers become localized with a backscattering behaviour in small-size nanostructures. In addition, the time constant for the carrier scattering is obtained and is only 64.3 fs due to increased electron interaction with interfaces and grain boundaries.
文摘This paper reports a new way to detect the enhanced transmission of a THz electromagnetic wave through an Ag/Ag2O layer by THz-TDS (time-domain spectroscopy). As the THz beam illuminates the sub-wavelength Ag particles gained by Ag2O thermal decomposition, the evanescent wave is generated. The evanescent wave is coupled by a 500μm-GaAs substrate, which attaches behind the Ag/Ag2O layer, and then it transmits to the far field to be detected. The experimental results indicate that the transmitting amplitude is enhanced, as well as the frequent shifting and spectra broadening.
基金supported by the National Natural Science Foundation of China under Grant No. 50971094, 61171051Beijing Key Project of Science and Technology Development under Grant No. KZ201310028032
文摘The terahertz time-domain spectroscopy (THz-TDS) system and the related technology and the applications in Capital Normal University are presented. The most often used THz-TDS system as a spectroscopic measurement setup in our lab is introduced in detail, including the THz radiation source, the THz detection method and its measurement, and the control system. THz spectra of various materials is summarized and discussed. These materials include but not limited to two kinds of typical matter-the illegal drugs and explosives. The biological macro-molecules, cosmetics and fine chemical materials, edible pigments and food additives, homocysteic acid and related compounds, heavy ions in soil, Chinese medicines, tobacco and crops, oil and chemical products, carbon nanotubes, superconductors, and various semiconductors and their heterojunctions, are presented. THz emissions from the InAs and InN semiconductors surface are compared. THz spectral investigation of metallic mesh structures is summarized. Finally, an outlook of THz spectroscopic applications is given.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3200100)the National Natural Science Foundation of China(Grant No.61575131)。
文摘Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.
文摘In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.
基金Supported by National Natural Science Foundation of China(Nos.10574134,10805068,and 60907044) and National Basic Research Program of China(No. 2010CB832903)
文摘Terahertz time-domain spectroscopy(THz-TDS)was utilized to investigate the solid-state reaction between L(+)-Tartaric acid and sodium hydrogen carbonate.Solid sodium hydrogen L(+)-tartrate monohydrate was synthesized efficiently by mechanical grinding,which is particularly sustainable and environmentally benign.Distinct THz absorptions were observed for pure reactants and the proposed product.The reaction process could be clearly visualized by THz spectral patterns of the reaction mixtures at different grinding time.The observed results were further confirmed by synchrotron radiation X-ray powder diffraction(SRXRPD)and Fourier transform infrared (FT-IR)spectroscopy.The study demonstrates that THz-TDS is an effective novel tool to monitor solid-state reactions in pharmaceutical industry.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金supported by the Key Project of Science and Technology Plan of Beijing Education Commission(KZ20231002808)。
文摘Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamin}were synthesized using a one-pot method.X-ray crystallography was used to elucidate their crystal structures and photophysical properties.A series of characterization tests including elemental analysis,NMR,FT-IR,UV-Vis absorption spectroscopy,fluorescence spectroscopy,thermal gravimetric analysis and terahertz time-domain spectroscopy(THz-TDS)were used to further investigate their properties.The results show that complex 1 structure is mononuclear containing two solvent molecules per unit cell,while complex 2 structure is binuclear containing two metal centers per unit cell.According to photophysical properties and density functional theory(DFT)calculations,their luminescence properties can be attributed to metal-to-ligand charge transfer(MLCT).Both complexes have a unique stability,which is confirmed by thermal gravimetric analysis.
基金funded by Key Technology Tackling Programme of Inner Mongolia,grant number2021GG0361funded by Basic Research Operating Costs of Colleges and Universities Directly Under the Inner Mongolia Autonomous Region Project。
文摘Terahertz time-domain spectroscopy is a kind of far-infrared spectroscopy technology,and its spectrum reflects the internal properties of substances with rich physical and chemical information,so the use of terahertz waves can be used to qualitatively identify food additives containing nitrogen elements.Analytic hierarchy process(AHP)was originally used to solve evaluation-type problems,and this paper introduces it into the field of terahertz spectral qualitative analysis,proposes a terahertz time-domain spectral qualitative identification method combined with analytic hierarchy process,and verifies the feasibility of the method by taking four common food additives(xylitol,L-alanine,sorbic acid,and benzoic acid)and two illegal additives(melamine,and Sudan Red No.I)as the objects of study.Firstly,the collected terahertz time-domain spectral data were pre-processed and transformed into a data set consisting of peaks,peak positions,peak numbers and overall trends;then,the data were divided into comparison and test sets,and a qualitative additive identification model incorporating analytic hierarchy process was constructed and parameter optimisation was performed.The results showed that the qualitative identification accuracies of additives based on single factors,i.e.,overall trend,peak value,peak position,and peak number,were 80.23%,70.93%,67.44%,and 40.70%,respectively,whereas the identification accuracy of the analytic hierarchy process qualitative identification method based on multi-factors could be improved to 92.44%.In addition,the fuzzy characterisation of the absorption spectrum data was binarised in the data pre-processing stage and used as the base data for the overall trend,and the recognition accuracy was improved to 94.19%by combining the fuzzy characterisation method of such data with the hierarchical analysis qualitative recognition model.The results show that it is feasible to use terahertz technology to identify different varieties of additives,and this paper constructs a hierarchical analytical qualitative model with better effect,which provides a new means for food additives detection,and the method is simple in steps,with a small demand for samples,which is suitable for the rapid detection of small samples.
基金National Natural Science Foundation of China(Grant Nos.52275096,52005108,52275523)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone High-end Equipment Vibration and Noise Detection and Fault Diagnosis Collaborative Innovation Platform ProjectFujian Provincial Major Research Project(Grant No.2022HZ024005)。
文摘The use of terahertz time-domain spectroscopy(THz-TDS)for the nondestructive testing and evaluation(NDT&E)of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials.In this study,the THz-TDS system is used to detect,localize and evaluate hidden multi-delamination defects(i.e.,a three-level multi-delamination system)in multilayered GFRP composite laminates.To obtain accurate results,a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight(TOF)signals.The thickness and location of each delamination defect in the z-direction(i.e.,through-the-thickness direction)are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates.A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712%relative error,while the relative error of the non-de-noised signals reaches 16.388%.Also,the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches.The present study provides an adequate theoretical analysis that could help NDT&E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS.Also,the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT&E of multilayered GFRP composite laminates.
文摘In the present work, we have studied the temporal evolution of aluminum alloy plasma produced by the fundamental (1064 nm) of a Q-switched Nd:YAG laser by placing the target material in air at atmospheric pressure. The four Al I-neutral lines at 308.21, 309.27, 394.40 and 369.15 nm as well as Al II-ionic lines at 281.61, 385.64 and 466.30 nm are used for the determination of the electron temperature Te using Saha-Boltzmann plot method. The neutral aluminum lines were found to suffer from optical thickness which manifested itself on the form of scattered points around the Saha-Boltzmann line. The isolated optically thin hydrogen Hα-line at 656.27 nm appeared in the spectra under the same experimental conditions was used to correct the Al I-lines which contained some optical thickness. The measurements were repeated at different delay times ranging from 1 to 5 μs. The comparison between the deduced electron temperatures from aluminum neutral lines before correction against the effect self-absorption to that after correction revealed a precise value in temperature. The results sure that, in case of the presence of self-absorption effect the temperature varies from (1.4067 - 1.2548 eV) as the delay time is varied from 0 to 5 μs. Whereas, in the case of repairing against the effect, it varies from (1.2826 - 0.8961 eV) for the same delay time variation.
文摘Terahertz (THz) radiation, whose frequency ranges from 0.1 THz to 10.0 THz, has rich science, but limited technology. It has long been considered the last remaining scientific gap in the electromagnetic spectrum. Far from being fully exploited, it offers great opportunities in science, innovation, new technology, and potential applications. THz science and technology enables fundamental research directly impact our lives, from industrial quality control,
文摘In order to study stream sediments in the terahertz range, we have measured six reference stream sediment samples by terahertz time-domain spectroscopy (THz-TDS). We obtained the absorption coefficients and refractive indexes. By analyzing the spectra, we got different drops in amplitude and delays in time. The absorption and refractive properties of samples changed with its components and types. In addition, we also found there was a nearly linear relationship between the absorption coefficient and the frequency. We calculated the slope value (K) of each sample by linear fitting, and find the K was corresponding to the contents of the samples. The results showed THz-TDS was an effective method to the analysis of stream sediments.
文摘In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.