An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-o...An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.展开更多
We introduce a modification of reflectron time-of-flight mass spectrometer for laser photodissociation of mass-selected ions. In our apparatus, the ions of interests were selected by a mass gate near the first space f...We introduce a modification of reflectron time-of-flight mass spectrometer for laser photodissociation of mass-selected ions. In our apparatus, the ions of interests were selected by a mass gate near the first space focus point and decelerated right after the mass gate, were then crossed by a laser beam for dissociation. The daughter ions and surviving parent ions were re-accelerated and analyzed by the reflectron time-of-flight mass spectrometer. Compared to the designs reported by other research groups, our selection-deceleration-dissociation-reacceleration approach has better daughter-parent-ions-separation, easier laser timing, and better overlapping between the ion beam and laser beam. We also conducted detailed cal- culations on the parent ion and daughter ion flight times, and provided a simplified formula for the calibration of daughter ion mass.展开更多
Two variants of application of a transaxial mirror with stigmatic spatial time-of-flight focusing in the time-of-flight mass spectrometer have been considered. In the first variant, the transaxial mirror is used as an...Two variants of application of a transaxial mirror with stigmatic spatial time-of-flight focusing in the time-of-flight mass spectrometer have been considered. In the first variant, the transaxial mirror is used as an ion reflector in the ordinary scheme of the time-of-flight mass reflectron. In the second variant, the transaxial mirror simultaneously fulfills the function of the ion reflector and corrector of aberrations caused by the energy spread of ions in the package, formed by the ion source of the mass reflectron. The expressions defining the conditions of stigmatic spatial time-of-flight focusing in the transaxial mirror and the combined system consisting of an ion source and a mirror have been derived. The relationships between geometrical and electrical parameters of three- and four-electrode transaxial mirrors realizing these conditions have been obtained by numerical calculations.展开更多
It is difficult to rapidly and on-line detect trace volatile organic compounds for miniature massspectrometry due to its limited sampling volume at slow pumping speed. In this paper, we developed anew radiofrequency f...It is difficult to rapidly and on-line detect trace volatile organic compounds for miniature massspectrometry due to its limited sampling volume at slow pumping speed. In this paper, we developed anew radiofrequency field enhanced chemical ionization source (RF-ECI) with vacuum ultraviolet (VUV)lamp by coupling radiofrequency electric field and direct-current field together. The experiment resultsshowed that the sensitivity of benzene, toluene, hydrogen sulfide and other compounds increased by 2-3orders of magnitude under the introduction of RF-ECI comparing to traditional single photon ionization(SPI). At the same time, the reagent ion of O2+ realized the charge transfer reaction chemical ionization,and the RF-ECI effectively expanded the detection range of the VUV lamp based SPI. The VUV lamp hasinherent advantages in the on-site analytical instrument for its small size and low power consumption,and the VUV lamp based RF-ECI miniature time-of-flight mass spectrometer (TOFMS) has a limit-of-detection for H2S as low as 0.0571 mg/m3, and it is expected to be used widely in the field of on-site rapidanalvsis.展开更多
An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed la...An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.展开更多
A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filte...A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.展开更多
Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensi...Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(2 D-LC/IM-QTOF-MS)enabling four-dimensional separations(2 D-LC,IM,and MS),is proposed.In combination with in-house database-driven automated peak annotation,this strategy was utilized to characterize ginsenosides simultaneously from white ginseng(WG)and red ginseng(RG).An offline 2 DLC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides.Ginsenoside analysis was performed by data-independent high-definition MSE(HDMSE)in the negative ESI mode on a Vion?IMS-QTOF hybrid high-resolution mass spectrometer,which could better resolve ginsenosides than MSEand directly give the CCS information.An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds,was established to assist the identification of ginsenosides.Streamlined workflows,by applying UNIFI?to automatedly annotate the HDMSEdata,were proposed.We could separate and characterize 323 ginsenosides(including 286 from WG and 306 from RG),and 125 thereof may have not been isolated from the Panax genus.The established 2 D-LC/IM-QTOF-HDMSEapproach could also act as a magnifier to probe differentiated components between WG and RG.Compared with conventional approaches,this dimensionenhanced strategy could better resolve coeluting herbal components and more efficiently,more reliably identify the multicomponents,which,we believe,offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.展开更多
Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better un- derstanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aeros...Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better un- derstanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR- ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30 4-30 μg m-3, which was higher than in summer (13 4-6.9 μg m-3). The elemental anal- ysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, re- spectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.展开更多
The miniature design technology is an important trend in space exploration.Mass spectrometer is used extensively in the space environment detection.The miniature ion mass spectrometer utilizes a 127° cylindrical ...The miniature design technology is an important trend in space exploration.Mass spectrometer is used extensively in the space environment detection.The miniature ion mass spectrometer utilizes a 127° cylindrical electrostatic analyzer accompanied with a Time of Flight(TOF)unit based on ultrathin carbon foil to measure the energy spectra and composition of space plasma.The Time of Flight technique has been used broadly in space plasma measurement.A new type of miniature method for the ion mass spectrometer is introduced.The total mass of the instrument is1.8 kg and the total power consumption is 2.0 W.The calibration results show that the energy measurement range is 8.71~43550eV,the energy resolution is 1.86%and the ion mass from 1 amu(1 amu= 1.67 × 10^(-27)kg) to 58 amu can be resolved by the miniature mass spectrometer.The miniature ion mass spectrometer also has a potential to be increased in the field of view by an electrostatic deflecting system to extend its application in space plasma detection.The miniature ion mass spectrometer has been selected for pre-study of Chinese Strategic Priority Research Program on Space Science.展开更多
Benzene is a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of las...Benzene is a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry. It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CnHm (n=3-5, m = 1-11), cycle-chain species of CnHm (n =6-9, m = 7-10) and polycyclic species CnHm (n ≥9, m = 8-12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.展开更多
The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a co...The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.展开更多
The structure consideration of a minicyclotron as super- sensitivity mass spectrometer for carbon -14 dating being constructed at this Institute is described. Some new design ideas and techniques are presented.
The electron impact time-of-flight(TOF) mass spectra of the title compounds were studied to establish their fragmentation processes. With the high resolution of the TOF instrument, the exact mass for each fragment was...The electron impact time-of-flight(TOF) mass spectra of the title compounds were studied to establish their fragmentation processes. With the high resolution of the TOF instrument, the exact mass for each fragment was determined. These data were used to infer the molecular formulas and the elemental compositions for all the molecular ions and fragments through software interpretation. By further applying the fragmentation regularity, the majority of ions were fully assigned. The main fragmentation pathways of the title compounds include the formation of molecular ions by the loss of R 1 groups in the 4-position and the ester groups in the 5-position. The formed ion can be further fragmented by the elimination of MeOH.展开更多
The time-of-flight mass spectrometry(TOF-MS),one of the mass spectrometry techniques,has been widely applied in the field of rapid screening of food hazard factors as a superior analysis technique because of its wide ...The time-of-flight mass spectrometry(TOF-MS),one of the mass spectrometry techniques,has been widely applied in the field of rapid screening of food hazard factors as a superior analysis technique because of its wide mass range,high resolution and mass measurement accuracy,high sensitivity and high analysis speed.In this paper,research progresses of TOF-MS on the detection of food additives,food contaminants and residues,illegal additives,pesticide residues,veterinary drug residues and mycotoxin were reviewed,and its probable approaching applications were prospected.展开更多
Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and...Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.展开更多
Matrix-assisted Laser Desorption/Ionization with Time-of-flight Mass Spectrometry (MALDI-TOFMS) was investigated as a method for the rapid identifica-tion of species. Current demand in microbial identi-fication is how...Matrix-assisted Laser Desorption/Ionization with Time-of-flight Mass Spectrometry (MALDI-TOFMS) was investigated as a method for the rapid identifica-tion of species. Current demand in microbial identi-fication is how to compare unknown strains to the known one quickly, semi-automatically and accurately. In this paper, we present a software tool that allows flexibly microbial matching in a user-friendly way, by letting the users to customize comparison parameters including: in vitro transcription enzyme, mass tolerance,minimum fragment length, intensity threshold and corresponding weights. We provide three spectral scoring functions to compute the affin-ity between the species. Therefore, the precision of microbial comparison increases. To test and verify this tool, we employed experimental spectral data based on MALDI-TOFMS and the gene sequences of E.coli and Salmonella. This software is written in Java for cross-platform intention.展开更多
Milk and dairy products are more and more popular with consumers due to their various nutrients, and their quality and safety issues have always been concerned. Therefore, the development of rapid, accurate and simple...Milk and dairy products are more and more popular with consumers due to their various nutrients, and their quality and safety issues have always been concerned. Therefore, the development of rapid, accurate and simple screening techniques is of great significance. Liquid chromatography-high resolution time-of-flight mass spectrometry has high-resolution and high-throughput detection functions, and has gradually begun to be applied in the detection of milk and dairy products. This paper summarized the application of milk and dairy products in liquid chromatography-high resolution time-of-flight mass spectrometry, laying a foundation for the development of new methods.展开更多
Ions with different rigidity have different radius of deflection in the same magnetic field, based on this principle the magnetic mass spectrometer, which will be used to analyze the beam quality and the distribution,...Ions with different rigidity have different radius of deflection in the same magnetic field, based on this principle the magnetic mass spectrometer, which will be used to analyze the beam quality and the distribution, can separate mixed ion beams. In order to reduce the energy loss of beam in vacuum pipe, the vacuum pressure level must be less than 1x10?4 Pa.展开更多
A novel energy analyzer with a simple structured Bessel box has been successfully developed and incorporated into ionization gauges and quadrupole mass spectrometers (QMS) to improve their measurement of the total and...A novel energy analyzer with a simple structured Bessel box has been successfully developed and incorporated into ionization gauges and quadrupole mass spectrometers (QMS) to improve their measurement of the total and partial pressures,respectively.We found that the energy analyzer may not only effectively separate the gas phase ions and electron stimulated desorption (ESD) ions produced in the ionizer,but also screen the ion collector from irradiation of the soft X rays and VUVphotons generated in the ionizer.The screening effects considerably better the trace impurity detection limit of the QMS down to a few tens ppb in the pressure range of 10 -3 Pa.The modified ionization gauge is capable of measuring pressure ranging from 10 -11 to 10 -6 Pa in the pulse counting mode and its upper limit may extends to 10 -3 Pa in DC ion current mode with typical sensitivities factor of(6.7±0.2)×10 -3 Pa -1 for N 2 and (2.3±0.2)×10 -3 Pa -1 for H 2,respectively.No ESD ions was observed in the simple looking spectrum obtained with the modified QMS.We also found that the energy spectra of fragment ions depend strongly on species of parent ions.展开更多
文摘An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.
基金V. ACKNOWLEDGMENTS This work supported by the National Natural Science Foundation of China (No.20853001). We thank Professor Qi-he Zhu and Professor Zhen Gao for valuable discussions.
文摘We introduce a modification of reflectron time-of-flight mass spectrometer for laser photodissociation of mass-selected ions. In our apparatus, the ions of interests were selected by a mass gate near the first space focus point and decelerated right after the mass gate, were then crossed by a laser beam for dissociation. The daughter ions and surviving parent ions were re-accelerated and analyzed by the reflectron time-of-flight mass spectrometer. Compared to the designs reported by other research groups, our selection-deceleration-dissociation-reacceleration approach has better daughter-parent-ions-separation, easier laser timing, and better overlapping between the ion beam and laser beam. We also conducted detailed cal- culations on the parent ion and daughter ion flight times, and provided a simplified formula for the calibration of daughter ion mass.
文摘Two variants of application of a transaxial mirror with stigmatic spatial time-of-flight focusing in the time-of-flight mass spectrometer have been considered. In the first variant, the transaxial mirror is used as an ion reflector in the ordinary scheme of the time-of-flight mass reflectron. In the second variant, the transaxial mirror simultaneously fulfills the function of the ion reflector and corrector of aberrations caused by the energy spread of ions in the package, formed by the ion source of the mass reflectron. The expressions defining the conditions of stigmatic spatial time-of-flight focusing in the transaxial mirror and the combined system consisting of an ion source and a mirror have been derived. The relationships between geometrical and electrical parameters of three- and four-electrode transaxial mirrors realizing these conditions have been obtained by numerical calculations.
基金financially supported by the National Natural Science Foundation of China(Nos.21375129 and 21675155)
文摘It is difficult to rapidly and on-line detect trace volatile organic compounds for miniature massspectrometry due to its limited sampling volume at slow pumping speed. In this paper, we developed anew radiofrequency field enhanced chemical ionization source (RF-ECI) with vacuum ultraviolet (VUV)lamp by coupling radiofrequency electric field and direct-current field together. The experiment resultsshowed that the sensitivity of benzene, toluene, hydrogen sulfide and other compounds increased by 2-3orders of magnitude under the introduction of RF-ECI comparing to traditional single photon ionization(SPI). At the same time, the reagent ion of O2+ realized the charge transfer reaction chemical ionization,and the RF-ECI effectively expanded the detection range of the VUV lamp based SPI. The VUV lamp hasinherent advantages in the on-site analytical instrument for its small size and low power consumption,and the VUV lamp based RF-ECI miniature time-of-flight mass spectrometer (TOFMS) has a limit-of-detection for H2S as low as 0.0571 mg/m3, and it is expected to be used widely in the field of on-site rapidanalvsis.
基金supported by the Ministry of Science and Technology of China(2013CB834603,2012YQ220113-3,and 2011YQ06010003)the National Natural Science Foundation of China(21273045 and 20933030)the Committee of Science and Technology of Shanghai(13XD1400800)
文摘An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.
文摘A combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometer (MS) was analyzed. FAIMS separates ions from the volatile organic compounds in the gas-phase as an ion-filter for MS. The sample ions were created at ambient pressure by ion source, which was equipped with a 10.6 eV UV discharge lamp (A=116.5 nm). The drift tube of FAIMS is composed of two parallel planar electrodes and the dimension is 10 mm×8 mm×0.5 mm. FAIMS was investigated when driven by the high-filed rectangular asymmetric waveform with the peak-to-peak voltage of 1.36 kV at the frequency of 1 MHz and the duty cycle of 30%. The acetone, the butanone, and their mixture were adopted to characterize the FAIMS-MS. The mass spectra obtained from MS illustrate that there are ion-molecular reactions between the ions and the sample neutral molecular. And the proton transfer behavior in the mixture of the acetone and the butanone is also observed. With the compensation voltage tuned from -30 V to 10 V with a step size of 0.1 V, the ion pre-separation before MS is realized.
基金the National Natural Science Foundation of China(Grant No.81872996)the State Key Research and Development Project(Grant No.2017YFC1702104)+1 种基金the State Key Project for the Creation of Major New Drugs(2018ZX09711001-009-010)the Tianjin Municipal Education Commission Research Project(Grant No.2017ZD07)。
文摘Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification.A dimension-enhanced strategy,by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(2 D-LC/IM-QTOF-MS)enabling four-dimensional separations(2 D-LC,IM,and MS),is proposed.In combination with in-house database-driven automated peak annotation,this strategy was utilized to characterize ginsenosides simultaneously from white ginseng(WG)and red ginseng(RG).An offline 2 DLC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides.Ginsenoside analysis was performed by data-independent high-definition MSE(HDMSE)in the negative ESI mode on a Vion?IMS-QTOF hybrid high-resolution mass spectrometer,which could better resolve ginsenosides than MSEand directly give the CCS information.An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds,was established to assist the identification of ginsenosides.Streamlined workflows,by applying UNIFI?to automatedly annotate the HDMSEdata,were proposed.We could separate and characterize 323 ginsenosides(including 286 from WG and 306 from RG),and 125 thereof may have not been isolated from the Panax genus.The established 2 D-LC/IM-QTOF-HDMSEapproach could also act as a magnifier to probe differentiated components between WG and RG.Compared with conventional approaches,this dimensionenhanced strategy could better resolve coeluting herbal components and more efficiently,more reliably identify the multicomponents,which,we believe,offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05100100&XDB05020000)the National Natural Science Foundation of China (Grant Nos. 41230642 & 41275139)
文摘Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better un- derstanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR- ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30 4-30 μg m-3, which was higher than in summer (13 4-6.9 μg m-3). The elemental anal- ysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, re- spectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.
基金Supported by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(XDA04071700,XDA04060202)
文摘The miniature design technology is an important trend in space exploration.Mass spectrometer is used extensively in the space environment detection.The miniature ion mass spectrometer utilizes a 127° cylindrical electrostatic analyzer accompanied with a Time of Flight(TOF)unit based on ultrathin carbon foil to measure the energy spectra and composition of space plasma.The Time of Flight technique has been used broadly in space plasma measurement.A new type of miniature method for the ion mass spectrometer is introduced.The total mass of the instrument is1.8 kg and the total power consumption is 2.0 W.The calibration results show that the energy measurement range is 8.71~43550eV,the energy resolution is 1.86%and the ion mass from 1 amu(1 amu= 1.67 × 10^(-27)kg) to 58 amu can be resolved by the miniature mass spectrometer.The miniature ion mass spectrometer also has a potential to be increased in the field of view by an electrostatic deflecting system to extend its application in space plasma detection.The miniature ion mass spectrometer has been selected for pre-study of Chinese Strategic Priority Research Program on Space Science.
基金supported by National Natural Science Foundation of China (No. 10875023)Scientific and Technical Key Project of Educational Ministry of China (No. 108034)
文摘Benzene is a major industrial air pollutant and can cause serious human health disorders. In this paper an investigation on benzene destruction, in an atmospheric-pressure fast-flow pulsed DC-discharge by means of laser ionization combined with time-of-flight (TOF) mass spectrometry, is reported. Most by-products including transient reactive species from the benzene discharge were characterized by molecular beam sampling combined with TOF mass spectrometry. It is showed that, with a gas mixture of 0.5% C6H6 in Ar, benzene can be effectively destroyed by discharge plasma. The intermediate species consisted of small fragments of CnHm (n=3-5, m = 1-11), cycle-chain species of CnHm (n =6-9, m = 7-10) and polycyclic species CnHm (n ≥9, m = 8-12). The alternation of mass peaks (intensity) with even/odd electrons was observed in the measured mass spectra. The results indicated that the alternation is mainly due to the different ionization potentials of the open shell and close shell species. Based on the examination of the features of the species' composition, the primary reaction pathways are proposed and discussed.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2018YFC1704500)Tianjin Committee of Science and Technology of China(Grant No.21ZYJDJC00080)National Natural Science Foundation of China(Grant No.81872996).
文摘The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.
文摘The structure consideration of a minicyclotron as super- sensitivity mass spectrometer for carbon -14 dating being constructed at this Institute is described. Some new design ideas and techniques are presented.
基金National Natural Science Foundation of China(No.2 0 332 0 2 0 )
文摘The electron impact time-of-flight(TOF) mass spectra of the title compounds were studied to establish their fragmentation processes. With the high resolution of the TOF instrument, the exact mass for each fragment was determined. These data were used to infer the molecular formulas and the elemental compositions for all the molecular ions and fragments through software interpretation. By further applying the fragmentation regularity, the majority of ions were fully assigned. The main fragmentation pathways of the title compounds include the formation of molecular ions by the loss of R 1 groups in the 4-position and the ester groups in the 5-position. The formed ion can be further fragmented by the elimination of MeOH.
基金Supported by Phase II Modern Agricultural Industry Technology System Innovation Team Construction Project of Hebei Province(HBCT2018120207)Key R&D Projects of Hebei Province(19227516D)Tangshan Institute of Industrial Technology for Functional Agricultural Products(2019TY003b)。
文摘The time-of-flight mass spectrometry(TOF-MS),one of the mass spectrometry techniques,has been widely applied in the field of rapid screening of food hazard factors as a superior analysis technique because of its wide mass range,high resolution and mass measurement accuracy,high sensitivity and high analysis speed.In this paper,research progresses of TOF-MS on the detection of food additives,food contaminants and residues,illegal additives,pesticide residues,veterinary drug residues and mycotoxin were reviewed,and its probable approaching applications were prospected.
文摘Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.
文摘Matrix-assisted Laser Desorption/Ionization with Time-of-flight Mass Spectrometry (MALDI-TOFMS) was investigated as a method for the rapid identifica-tion of species. Current demand in microbial identi-fication is how to compare unknown strains to the known one quickly, semi-automatically and accurately. In this paper, we present a software tool that allows flexibly microbial matching in a user-friendly way, by letting the users to customize comparison parameters including: in vitro transcription enzyme, mass tolerance,minimum fragment length, intensity threshold and corresponding weights. We provide three spectral scoring functions to compute the affin-ity between the species. Therefore, the precision of microbial comparison increases. To test and verify this tool, we employed experimental spectral data based on MALDI-TOFMS and the gene sequences of E.coli and Salmonella. This software is written in Java for cross-platform intention.
基金Supported by Key R&D Projects in Hebei Province(19227516D)Hebei Provincial PhaseⅡModern Agricultural Industry Technology System Innovation Team Building Project(HBCT2018120207,HBCT2018160403)Hebei Province Innovation Ability Promotion Plan Project(20567673H)。
文摘Milk and dairy products are more and more popular with consumers due to their various nutrients, and their quality and safety issues have always been concerned. Therefore, the development of rapid, accurate and simple screening techniques is of great significance. Liquid chromatography-high resolution time-of-flight mass spectrometry has high-resolution and high-throughput detection functions, and has gradually begun to be applied in the detection of milk and dairy products. This paper summarized the application of milk and dairy products in liquid chromatography-high resolution time-of-flight mass spectrometry, laying a foundation for the development of new methods.
文摘Ions with different rigidity have different radius of deflection in the same magnetic field, based on this principle the magnetic mass spectrometer, which will be used to analyze the beam quality and the distribution, can separate mixed ion beams. In order to reduce the energy loss of beam in vacuum pipe, the vacuum pressure level must be less than 1x10?4 Pa.
文摘A novel energy analyzer with a simple structured Bessel box has been successfully developed and incorporated into ionization gauges and quadrupole mass spectrometers (QMS) to improve their measurement of the total and partial pressures,respectively.We found that the energy analyzer may not only effectively separate the gas phase ions and electron stimulated desorption (ESD) ions produced in the ionizer,but also screen the ion collector from irradiation of the soft X rays and VUVphotons generated in the ionizer.The screening effects considerably better the trace impurity detection limit of the QMS down to a few tens ppb in the pressure range of 10 -3 Pa.The modified ionization gauge is capable of measuring pressure ranging from 10 -11 to 10 -6 Pa in the pulse counting mode and its upper limit may extends to 10 -3 Pa in DC ion current mode with typical sensitivities factor of(6.7±0.2)×10 -3 Pa -1 for N 2 and (2.3±0.2)×10 -3 Pa -1 for H 2,respectively.No ESD ions was observed in the simple looking spectrum obtained with the modified QMS.We also found that the energy spectra of fragment ions depend strongly on species of parent ions.