In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the ap...In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.展开更多
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-ne...To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan...In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.展开更多
The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated...The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.展开更多
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit....A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads t...When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads to an extended power failure.Based on equivalent circuit and Kirchhoff’s current law,the feeder current characteristic in the substation,AT station and sectioning post when T-R fault,F-R fault,and T-F fault occur are analyzed and their expressions are obtained.When the traction power supply system is equipped with wide-area protection measurement and control system,the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed.When a short-circuit fault occurs in the power supply arm,all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations.After data synchronous processing and logic judgment,the fault line of the power supply arm can be identified and isolated quickly.The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions,transition resistances,and fault types.The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit(EMU),and reliability,selectivity,and rapidity of relay protection are all improved.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylide...Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP,PH)nanofiber membranes were used as tribo-positive and tribo-negative materials,respectively.Phytic acid-doped polyaniline(PANI)/cotton fabric(PPCF)and ethylenediamine(EDA)-crosslinked PAl(EPAl)nanofiber membranes were used as triboelectrode and triboencapsulation materials,respectively.The result showed that when the PAl-PH-based TENG was shaped as a circle with a radius of 1 cm,under the pressure of 50 N,and the frequency of 0.5 Hz,the open-circuit voltage(V_(oc))and short-circuit current(I_(sc))reached the highest value of 66.6 V and-93.4 to 110.1 nA,respectively.Moreover,the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices.When the PAl-PH-based TENG was shaped as a 5×5 cm^(2)rectangle,a 33 pF capacitor could be charged to 15 V in 28 s.Interestingly,compared to PAl nanofiber membranes,EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance.The PPCF exhibited<5%resistance change after washing,bending,and stretching.展开更多
The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC ...The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC BPCU) is put forward to manage the power supply system automatically. The redundancy innovation is also applied in both hardware and software of DC BPCU. Furthermore, redundancy fault diagnosis is discussed through the existing parts. Experiments and applications show that the proposed aircraft DC power supply system possesses many advantages of high reliability, high automation and so on.展开更多
The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presen...The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presented. The large-signal model of it is also derived. Based on the comprehensive analysis of the system model, the compensator is designed to make the system match better and to improve its dynamic performance and the stability under perturbations. Finally, the design methods and the analysis are verified by simulation and experimental results.展开更多
Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
The highpower pulsed power supply system for the magnetic field of the HL-2A Tokamak is described in this paper. The total output power of its eight magnetic field power supply units of nearly 250 MW. Their highest DC...The highpower pulsed power supply system for the magnetic field of the HL-2A Tokamak is described in this paper. The total output power of its eight magnetic field power supply units of nearly 250 MW. Their highest DC output voltage and current are 3510 V and 45 kA, respectively. All the units are operated in a pulsed mode. The pulse duration is 5 s, and the cyclic period is 15 min. The power supply system consists mainly of pulsed flywheel motor generators, rectifying transformers, thyristor converters, diode rectifiers and switches. The system incorporates many key technologies-supply equalization with two generators and four diode bridges, constant-angle phase triggers with a wide frequency range, current equalization, a status detector for the high current 6-phase converter, and advanced monitoring based on a programmable logic computer and engineering parameter measurement. The experimental results show that the performance of the power supply system satisfies the requirements of HL-2A experiments very well.展开更多
A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole ...A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.展开更多
文摘In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金supported by 2023 Liaoning Provincial Department of Education Basic Research Project (General Project)(JYTMS20230815)。
文摘To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.
基金supported in part by the National Key Research and Development Program of China(No.2017YFE0300104)in part by National Natural Science Foundation of China(No.51821005)。
文摘The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.
基金This research was supported by the Science and Technology Plan Project of Sichuan Province(No.21YYJC3324)the Science and Technology Plan Project of Sichuan Province(No.2022YFQ0104).
文摘A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0405).
文摘When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads to an extended power failure.Based on equivalent circuit and Kirchhoff’s current law,the feeder current characteristic in the substation,AT station and sectioning post when T-R fault,F-R fault,and T-F fault occur are analyzed and their expressions are obtained.When the traction power supply system is equipped with wide-area protection measurement and control system,the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed.When a short-circuit fault occurs in the power supply arm,all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations.After data synchronous processing and logic judgment,the fault line of the power supply arm can be identified and isolated quickly.The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions,transition resistances,and fault types.The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit(EMU),and reliability,selectivity,and rapidity of relay protection are all improved.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
基金supported by the JSPS KAKENHI(Grant numbers JP20H00288 and JP22K02136)
文摘Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP,PH)nanofiber membranes were used as tribo-positive and tribo-negative materials,respectively.Phytic acid-doped polyaniline(PANI)/cotton fabric(PPCF)and ethylenediamine(EDA)-crosslinked PAl(EPAl)nanofiber membranes were used as triboelectrode and triboencapsulation materials,respectively.The result showed that when the PAl-PH-based TENG was shaped as a circle with a radius of 1 cm,under the pressure of 50 N,and the frequency of 0.5 Hz,the open-circuit voltage(V_(oc))and short-circuit current(I_(sc))reached the highest value of 66.6 V and-93.4 to 110.1 nA,respectively.Moreover,the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices.When the PAl-PH-based TENG was shaped as a 5×5 cm^(2)rectangle,a 33 pF capacitor could be charged to 15 V in 28 s.Interestingly,compared to PAl nanofiber membranes,EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance.The PPCF exhibited<5%resistance change after washing,bending,and stretching.
文摘The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC BPCU) is put forward to manage the power supply system automatically. The redundancy innovation is also applied in both hardware and software of DC BPCU. Furthermore, redundancy fault diagnosis is discussed through the existing parts. Experiments and applications show that the proposed aircraft DC power supply system possesses many advantages of high reliability, high automation and so on.
文摘The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presented. The large-signal model of it is also derived. Based on the comprehensive analysis of the system model, the compensator is designed to make the system match better and to improve its dynamic performance and the stability under perturbations. Finally, the design methods and the analysis are verified by simulation and experimental results.
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
文摘The highpower pulsed power supply system for the magnetic field of the HL-2A Tokamak is described in this paper. The total output power of its eight magnetic field power supply units of nearly 250 MW. Their highest DC output voltage and current are 3510 V and 45 kA, respectively. All the units are operated in a pulsed mode. The pulse duration is 5 s, and the cyclic period is 15 min. The power supply system consists mainly of pulsed flywheel motor generators, rectifying transformers, thyristor converters, diode rectifiers and switches. The system incorporates many key technologies-supply equalization with two generators and four diode bridges, constant-angle phase triggers with a wide frequency range, current equalization, a status detector for the high current 6-phase converter, and advanced monitoring based on a programmable logic computer and engineering parameter measurement. The experimental results show that the performance of the power supply system satisfies the requirements of HL-2A experiments very well.
文摘A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.