Knowledge regarding earthquake hazards and seismicity is crucial for crisis management, and the occurrence of foreshocks, seismic activity patterns, and spatiotemporal variations in seismic activity have been studied....Knowledge regarding earthquake hazards and seismicity is crucial for crisis management, and the occurrence of foreshocks, seismic activity patterns, and spatiotemporal variations in seismic activity have been studied. Furthermore, the estimation of the region-time-length (RTL) parameter has been proposed to detect seismic quiescence before the occurrence of a large earthquake. In addition, the time-to-failure method has been used to estimate the time occurrence of large earthquakes. Hence, in this study, to gain deeper insight into seismic activity in the southern Zagros region, we utilized the RTL algorithm to identify the quiescence and activation phases leading to the Fin doublet earthquakes. Temporal variations in the RTL parameter showed two significant anomalies. One corresponded to the occurrence time of the first earthquake (2017-12-12);the other anomaly was associated with the occurrence time of the second event (2021-11-14). Based on a negative value of the RTL parameter observed in the vicinity of the Fin epicenters (2021), seismic quiescence (a decrease in seismicity compared to the preceding background rate) was identified. The spatial distribution of the RTL prognostic parameters confirms the appearance of seismic quiescence surrounding the epicenter of the Fin doublet earthquakes (2021). The time-to-failure method was designed using precursory events that describe the acceleration of the seismic energy release before the mainshock. Using the time-to-failure method for the earthquake catalog, it was possible to estimate both the magnitude and time of failure of the Fin doublet. Hence, the time-tofailure technique can be a useful supplementary method to the RTL algorithm for determining the characteristics of impending earthquakes.展开更多
The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative r...The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative releasing model of precursory earthquake energy. By fitting the observed data with the theoretical formula, a medium-short term forecast technique for the main shock events could be established, by which the location, time and magnitude of the main shock could be determined. The data used in the paper are obtained from the earthquake catalogue recorded by Yunnan Regional Seismological Network with a time coverage of 1965~2002. The statistical analyses for the past 37 years show that the data of M2.5 earthquakes were fairly complete. In the present paper, 30 main shocks occurred in Yunnan region were simulated. For 25 of them, the forecasting time and magnitude from the simulation of precursory sequence are very close to the actual values with the precision of about 0.57 (magnitude unit). Suppose that the last event of the precursory sequence is known, then the time error for the forecasting main shock is about 0.64 year. For the other 5 main shocks, the simulation cannot be made due to the insufficient precursory events for the full determination of energy accelerating curve or disturbance to the energy-release curve. The results in the paper indicate that there is no obviously linear relation in the optimal searching radius for the main shock and the precursory events because Yunnan is an active region with damage earthquakes and moderate and small earthquakes. However, there is a strong correlation between the main shock moment and the coefficient k/m. The optimal fitting range for the forecasting time and magnitude can be further reduced using the relation between the main shock moment lgM0 and the coefficient lgk/m and the value range of the restricting index m, by which the forecast precision of the simulated main shock can be improved. The time-to-failure method is used to fit 30 main shocks in the paper and more than 80% of them have acquired better results, indicating that the method is prospective for its ability to forecast the known main shock sequence. Therefore, the prospect is cheerful to make medium-short term forecast for the forthcoming main shocks by the precursory events.展开更多
文摘Knowledge regarding earthquake hazards and seismicity is crucial for crisis management, and the occurrence of foreshocks, seismic activity patterns, and spatiotemporal variations in seismic activity have been studied. Furthermore, the estimation of the region-time-length (RTL) parameter has been proposed to detect seismic quiescence before the occurrence of a large earthquake. In addition, the time-to-failure method has been used to estimate the time occurrence of large earthquakes. Hence, in this study, to gain deeper insight into seismic activity in the southern Zagros region, we utilized the RTL algorithm to identify the quiescence and activation phases leading to the Fin doublet earthquakes. Temporal variations in the RTL parameter showed two significant anomalies. One corresponded to the occurrence time of the first earthquake (2017-12-12);the other anomaly was associated with the occurrence time of the second event (2021-11-14). Based on a negative value of the RTL parameter observed in the vicinity of the Fin epicenters (2021), seismic quiescence (a decrease in seismicity compared to the preceding background rate) was identified. The spatial distribution of the RTL prognostic parameters confirms the appearance of seismic quiescence surrounding the epicenter of the Fin doublet earthquakes (2021). The time-to-failure method was designed using precursory events that describe the acceleration of the seismic energy release before the mainshock. Using the time-to-failure method for the earthquake catalog, it was possible to estimate both the magnitude and time of failure of the Fin doublet. Hence, the time-tofailure technique can be a useful supplementary method to the RTL algorithm for determining the characteristics of impending earthquakes.
文摘The medium-short term forecast for a certain kinds of main earthquake events might be possible with the time-to-failure method presented by Varnes (1989), Bufe and Varnes (1993), which is to simulate an accelerative releasing model of precursory earthquake energy. By fitting the observed data with the theoretical formula, a medium-short term forecast technique for the main shock events could be established, by which the location, time and magnitude of the main shock could be determined. The data used in the paper are obtained from the earthquake catalogue recorded by Yunnan Regional Seismological Network with a time coverage of 1965~2002. The statistical analyses for the past 37 years show that the data of M2.5 earthquakes were fairly complete. In the present paper, 30 main shocks occurred in Yunnan region were simulated. For 25 of them, the forecasting time and magnitude from the simulation of precursory sequence are very close to the actual values with the precision of about 0.57 (magnitude unit). Suppose that the last event of the precursory sequence is known, then the time error for the forecasting main shock is about 0.64 year. For the other 5 main shocks, the simulation cannot be made due to the insufficient precursory events for the full determination of energy accelerating curve or disturbance to the energy-release curve. The results in the paper indicate that there is no obviously linear relation in the optimal searching radius for the main shock and the precursory events because Yunnan is an active region with damage earthquakes and moderate and small earthquakes. However, there is a strong correlation between the main shock moment and the coefficient k/m. The optimal fitting range for the forecasting time and magnitude can be further reduced using the relation between the main shock moment lgM0 and the coefficient lgk/m and the value range of the restricting index m, by which the forecast precision of the simulated main shock can be improved. The time-to-failure method is used to fit 30 main shocks in the paper and more than 80% of them have acquired better results, indicating that the method is prospective for its ability to forecast the known main shock sequence. Therefore, the prospect is cheerful to make medium-short term forecast for the forthcoming main shocks by the precursory events.