Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose condition...In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.展开更多
We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for m...We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.展开更多
This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregu...This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.展开更多
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a...We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.展开更多
Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop ...Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizin...The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach.展开更多
Cooperative safety driving systems using vehicle-to-vehicle and vehicle-to infrastructure communication are developed. Sensor data of vehicles and infrastructures are communicated in the cooperative safety driving sys...Cooperative safety driving systems using vehicle-to-vehicle and vehicle-to infrastructure communication are developed. Sensor data of vehicles and infrastructures are communicated in the cooperative safety driving system. LDM (Local Dynamic Map) is standardized by ETSI (European Telecommunications Standards Institute) to manage the vehicle sensor data and the map data. Implementations of LDM are reported on documents of ETSI, but there are no numerical results. The implementations of LDM are deployed the database management system. We think that the response time of the database becomes higher as the number of vehicles grows. In this paper, we have implemented and evaluated the LDM with the collision detection application.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are propose...The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.展开更多
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear funct...In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.展开更多
The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condi...The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.展开更多
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl...The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.展开更多
This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction...This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme.Communication between MATLAB and Code V is established via ActiveX technique in computer simulation.The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror.After comparison of performance of the corrected system with the baseline system,AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.展开更多
Based on Neumman series and epsilon-algorithm, an efficient computation for dynamic responses of systems with arbitrary time-varying characteristics is investigated. Avoiding the calculation for the inverses of the eq...Based on Neumman series and epsilon-algorithm, an efficient computation for dynamic responses of systems with arbitrary time-varying characteristics is investigated. Avoiding the calculation for the inverses of the equivalent stiffness matrices in each time step, the computation effort of the proposed method is reduced compared with the full analysis of Newmark method. The validity and applications of the proposed method are illustrated by a 4-DOF spring-mass system with periodical time-varying stiffness properties and a truss structure with arbitrary time-varying lumped mass. It shows that good approximate results can be obtained by the proposed method compared with the responses obtained by the full analysis of Newmark method.展开更多
In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any ord...In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.展开更多
We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The conver...We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.展开更多
The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on...The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.展开更多
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金the financial support received from NATO under the Emerging Security Challenges Division programthe support received from NPRP (10-0105-17017) from the Qatar National Research Fund (a member of Qatar Foundation)+1 种基金the support received from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Department of National Defence (DND) under the Discovery Grant and DND Supplemental Programssupported in part by funding from the Innovation for Defence Excellence and Security (IDEaS) program from the Department of National Defence (DND)。
文摘In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.
基金Project supported by the Natural Science Foundation of Jiangsu Province (Grant No.BK20220917)the National Natural Science Foundation of China (Grant Nos.12001213 and 12302035)。
文摘We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61933012,62250710167,61860206008,62203078)the Central University Project(2021CDJCGJ002,2022CDJKYJH019,2022CDJKYJH051)。
文摘This work proposes an event-triggered adaptive control approach for a class of uncertain nonlinear systems under irregular constraints.Unlike the constraints considered in most existing papers,here the external irregular constraints are considered and a constraints switching mechanism(CSM)is introduced to circumvent the difficulties arising from irregular output constraints.Based on the CSM,a new class of generalized barrier functions are constructed,which allows the control results to be independent of the maximum and minimum values(MMVs)of constraints and thus extends the existing results.Finally,we proposed a novel dynamic constraint-driven event-triggered strategy(DCDETS),under which the stress on signal transmission is reduced greatly and no constraints are violated by making a dynamic trade-off among system state,external constraints,and inter-execution intervals.It is proved that the system output is driven to close to the reference trajectory and the semi-global stability is guaranteed under the proposed control scheme,regardless of the external irregular output constraints.Simulation also verifies the effectiveness and benefits of the proposed method.
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
文摘We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.
文摘Eigenstructure assignment using the proportional-plus-derivative feedback controller in a class of secondorder dynamic system is investigated. Simple, general, complete parametric expressions for both the closed-loop eigenvector matrix and the feedback gains are established based on two simple Smith form reductions. The approach utilizes directly the original system data and involves manipulations only on n-dimensional matrices. Furthermore, it reveals all the degrees of freedom which can be further utilized to achieve additional system specifications. An example shows the effect of the proposed approach.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金partially supported by the Natural Sciencesand Engineering Research Council(NSERC)of Canada through the NSERC Discovery(RGPIN-2016-04988)。
文摘The paper proposes a novel approach for formationcontainment control based on a dynamic event-triggering mechanism for multi-agent systems.The leader-leader and follower-follower communications are reduced by utilizing the distributed dynamic event-triggered framework.We consider two separate sets of design parameters:one set comprising control and dynamic event-triggering parameters for the leaders and a second set similar to the first one with different values for the followers.The proposed algorithm includes two novel stages of codesign optimization to simultaneously compute the two sets of parameters.The design optimizations are convex and use the weighted sum approach to enable a structured trade-off between the formation-containment convergence rate and associated communications.Simulations based on non-holonomic mobile robot multi-agent systems quantify the effectiveness of the proposed approach.
文摘Cooperative safety driving systems using vehicle-to-vehicle and vehicle-to infrastructure communication are developed. Sensor data of vehicles and infrastructures are communicated in the cooperative safety driving system. LDM (Local Dynamic Map) is standardized by ETSI (European Telecommunications Standards Institute) to manage the vehicle sensor data and the map data. Implementations of LDM are reported on documents of ETSI, but there are no numerical results. The implementations of LDM are deployed the database management system. We think that the response time of the database becomes higher as the number of vehicles grows. In this paper, we have implemented and evaluated the LDM with the collision detection application.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
文摘The distinct element method(DEM)has been used successfully for the dynamic analysis of rigid block sys- tems.One of many difficulties associated with DEM is modeling of damping.In this paper,new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid muhi-block systems.The stiff- ness proportional damping is constructed for the prescribed damping ratio,based on the non-zero fundamental frequency ef- fective during the time interval while the boundary conditions remain essentially constant.At this time interval,the funda- mental frequency can be estimated without complete eigenvalue analysis.The damping coefficients will vary while the damp- ing ratio remains the same throughout the entire analysis.A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases.These procedures were implemented in the development of the dis- tinet element method for the dynamic analyses of piled multi-block systems.The analysis results |or the single-block and two-block systems were in a good agreement with the analytic predictions.Applications to the seismic analyses of piled four- block systems revealed that the new procedures can make a significant difference and may lead to much-improved results.
基金supported by National Natural Science Foundation of China (No. 60525303 and 60704009)Key Research Program of Hebei Education Department (No. ZD200908)
文摘In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.
基金This work was supported by National Natural Science Foundation of China (No. 60710002)Program for Changjiang Scholars and Innovative Research Team in University
文摘The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA012339)
文摘This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme.Communication between MATLAB and Code V is established via ActiveX technique in computer simulation.The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror.After comparison of performance of the corrected system with the baseline system,AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.
基金supported by the Foundation of the Science and Technology of Jilin Province (20070541)985-Automotive Engineering of Jilin University and Innovation Fund for 985 Engineering of Jilin University (20080104).
文摘Based on Neumman series and epsilon-algorithm, an efficient computation for dynamic responses of systems with arbitrary time-varying characteristics is investigated. Avoiding the calculation for the inverses of the equivalent stiffness matrices in each time step, the computation effort of the proposed method is reduced compared with the full analysis of Newmark method. The validity and applications of the proposed method are illustrated by a 4-DOF spring-mass system with periodical time-varying stiffness properties and a truss structure with arbitrary time-varying lumped mass. It shows that good approximate results can be obtained by the proposed method compared with the responses obtained by the full analysis of Newmark method.
文摘In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.
基金Supported by the National Natural Science Foun-dation of China (60133010) the Natural Science Foundation ofHubei Province (2004ABA011)
文摘We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.
基金the National NSFC under grant No.50579022the Foundation of Pre-973 Program of China under grant No.2004CCA02500+1 种基金the SRF for the ROCS,SEMthe Talent Recruitment Foundation of HUST
文摘The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.