A machine learning method for predicting the evolution of a mobile communication channel based on a specific type of convolutional neural network is developed and evaluated in a simulated multipath transmission scenar...A machine learning method for predicting the evolution of a mobile communication channel based on a specific type of convolutional neural network is developed and evaluated in a simulated multipath transmission scenario.The simulation and channel estimation are designed to replicate real-world scenarios and common measurements supported by reference signals in modern cellular networks.The capability of the predictor meets the requirements that a deployment of the developed method in a radio resource scheduler of a base station pos es.Possible applications of the method are discussed.展开更多
This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical...This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical models for simulating the characterizations of different environments. A core idea of the simulator is to construct a Rice distribution-based multipath fading module produced by a modified Gans Doppler power spectrum, and in combination with a Markov model to predict the time-dependent characteristics of packet in different radio circumstances. It can simply predict the packet performance of the future channel and evaluate the relations between the radio channel and the modulation schemes, error control protocols and channel coding. Simulation results demonstrate that it is a reliable and efficient method.展开更多
Using the hypothesis that data transmitted by different users are statistically independent of each other,this paper proposes a fixed-point blind adaptive multiuser detection algorithm for Time-Hopping (TH) Impulse Ra...Using the hypothesis that data transmitted by different users are statistically independent of each other,this paper proposes a fixed-point blind adaptive multiuser detection algorithm for Time-Hopping (TH) Impulse Radio (IR) Ultra Wide Band (UWB) systems in multipath channel,which is based on Independent Component Analysis (ICA) idea. The proposed algorithm employs maximizing negentropy criterion to separate the data packets of different users. Then the user characteristic se-quences are utilized to identify the data packet order of the desired user. This algorithm only needs the desired user’s characteristic sequence instead of channel information,power information and time-hoping code of any user. Due to using hypothesis of statistical independence among users,the proposed algorithm has the outstanding Bit Error Rate (BER) performance and the excellent ability of near-far resistance. Simulation results demonstrate that this algorithm has the performance close to that of Maximum-Likelihood (ML) algorithm and is a suboptimum blind adaptive multiuser detection algorithm of excellent near-far resistance and low complexity.展开更多
Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse respon...Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems.展开更多
In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge...In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge that is not easily obtained. Therefore, the pilot tones have to be close enough to fulfill the sampling theorem. In this case the statistical knowledge of the channel is not required to reconstruct correctly the channel impulse response (CIR). This paper explores the optimal placement and number of pilot symbols, we investigate optimal training sequences in OFDM systems and we analyze the number of pilot symbols required to fulfill the sampling theorem. Using a general model for a multipath slowly fading channel, the approach is based on the LS as a criterion of channel estimation while the channel interpolation is done using the piecewise-constant interpolation compromising between complexity and performance. Simulation results demonstrate the good performance of our approach.展开更多
Time-varying channel modeling plays an important role for many applications in time-variant scenarios,while most clustering algorithms focus on static channels and cannot accurately model the channel time-evolution pr...Time-varying channel modeling plays an important role for many applications in time-variant scenarios,while most clustering algorithms focus on static channels and cannot accurately model the channel time-evolution properties.In this paper,a fuzzy clustering algorithm based on multipath component(MPC)trajectory is proposed.Firstly,both the distance and velocity similarities of the MPCs in different snapshots are taken into account to track the MPC trajectory,in which the fuzzy scheme and a kernel function are used to calculate the distance and velocity similarities,respectively.Secondly,a fuzzy MPC trajectory clustering algorithm is proposed to cluster the MPCs in multiple snapshots.The MPCs in a snapshot are clustered according to the membership,which is defined as the probability that a MPC belongs to different clusters.Finally,time-varying channels at 28 GHz are simulated to validate the performance of our proposed algorithm.The results show that our proposed algorithm is able to accurately identify the clusters in time-varying channels compared with the existing clustering algorithms.展开更多
Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-...Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.展开更多
In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the syste...In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the system of IEEE 802.16a with OFDM modulation. First investigated is the influence of channel cstimation schemes on LDPC-code based OFDM system in static and multipath fading channels. According to the different propagation environments in 802.16a system, a dynamic channel estimation scheme is proposed. A good irregular LDPC code is designed with code rate of 1/2 and code length of 1200. Simulation results show that the performance of LDPC coded OFDM system proposed in this paper is better than that of the convolution Turbo coded OFDM system proposed in IEEE standard 802.16a.展开更多
In this paper, a Direction Of Arrival (DOA) estimation algorithm is proposed for multiuser signals through uplink asynchronous multipath Code Division Multiple Access (CDMA) channels. The algorithm is based directly o...In this paper, a Direction Of Arrival (DOA) estimation algorithm is proposed for multiuser signals through uplink asynchronous multipath Code Division Multiple Access (CDMA) channels. The algorithm is based directly on the correlation matrices of matched filter bank outputs of desired user’s multipath signals and it does not require that the elements of base station antenna array outnumber the multipath signals, which is necessary for the conventional sub-space based direction-finding algorithm. Simulation results show that the proposed algorithm estimates the DOA of multipath signals effectively and acceptably. The proposed algorithm has the prominent advantages of low complexity, simpleness and practicality, which make it much more suitable for practical application.展开更多
An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it...For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.展开更多
Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in...Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.展开更多
In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN mod...In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall.展开更多
Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of...Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of the instantaneous channel state information(CSI)in the cascaded RIS chain makes an indispensable contribution to the performance gains.However,it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel.In this work,a channel estimation scheme for the RIS-assisted wireless communication system is proposed,which is demonstrated to perform well in a time-variant scenario.The cascaded RIS channel is modeled as a state-space model based upon the mobility situations.In addition,to fully exploit the time correlation of channel,Kalman filter is employed by taking the prior information of channels into account.Further,the optimal reflection coefficients are derived according to the minimum mean square error(MMSE)criterion.Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.展开更多
In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utiliz...In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utilizes a discriminator to calculate the divergence between the predicted downlink channel state information(CSI) and the real sample distributions under a conditional constraint that is previous uplink CSI. The generator of CPcGAN learns the function relationship between the conditional constraint and the predicted downlink CSI and reduces the divergence between predicted CSI and real CSI.The capability of CPcGAN fitting data distribution can capture the time-varying and multipath characteristics of the channel well. Considering the propagation characteristics of real channel, we further develop a channel prediction error indicator to determine whether the generator reaches the best state. Simulations show that the CPcGAN can obtain higher prediction accuracy and lower system bit error rate than the existing methods under the same user speeds.展开更多
SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new stat...SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters,the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling small-scale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions (CDFs) for the three key channel impulse response (CIR) statistics.展开更多
Millimeter wave(mmWave)massive massive multiple input multiple output(MIMO)technique has been regarded as the viable solution for vehicular communications in 5G and beyond.To achieve the substantial increase in date r...Millimeter wave(mmWave)massive massive multiple input multiple output(MIMO)technique has been regarded as the viable solution for vehicular communications in 5G and beyond.To achieve the substantial increase in date rates,it is important to take an effective channel state information(CSI).However,existing channel estimation strategies are unavailable since the users high-mobility.To solve above issues,in this paper,inspired by a specific antenna structure,we propose a novel approach for fast time-varying channel estimation.Specifically,by considering the vehicle scenario with high-mobility,a corresponding mathematical model is firstly established.Then,based on the special structural of the sparse array,the switch network is used to replace the convention phase shifter of mmWave hybrid system,which can effectively reduce the number of radio-frequency(RF)chains and antennas.Furthermore,by solving the semidefinite programming(SDP)duality problem,the Doppler frequency and path parameters are effectively estimated.Simulation results are shown that the computational complexity and estimation accuracy of the proposed algorithm is superior than that of the traditional schemes.展开更多
文摘A machine learning method for predicting the evolution of a mobile communication channel based on a specific type of convolutional neural network is developed and evaluated in a simulated multipath transmission scenario.The simulation and channel estimation are designed to replicate real-world scenarios and common measurements supported by reference signals in modern cellular networks.The capability of the predictor meets the requirements that a deployment of the developed method in a radio resource scheduler of a base station pos es.Possible applications of the method are discussed.
基金Supported by the National Natural Science Foundation of China (40474055)
文摘This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical models for simulating the characterizations of different environments. A core idea of the simulator is to construct a Rice distribution-based multipath fading module produced by a modified Gans Doppler power spectrum, and in combination with a Markov model to predict the time-dependent characteristics of packet in different radio circumstances. It can simply predict the packet performance of the future channel and evaluate the relations between the radio channel and the modulation schemes, error control protocols and channel coding. Simulation results demonstrate that it is a reliable and efficient method.
文摘Using the hypothesis that data transmitted by different users are statistically independent of each other,this paper proposes a fixed-point blind adaptive multiuser detection algorithm for Time-Hopping (TH) Impulse Radio (IR) Ultra Wide Band (UWB) systems in multipath channel,which is based on Independent Component Analysis (ICA) idea. The proposed algorithm employs maximizing negentropy criterion to separate the data packets of different users. Then the user characteristic se-quences are utilized to identify the data packet order of the desired user. This algorithm only needs the desired user’s characteristic sequence instead of channel information,power information and time-hoping code of any user. Due to using hypothesis of statistical independence among users,the proposed algorithm has the outstanding Bit Error Rate (BER) performance and the excellent ability of near-far resistance. Simulation results demonstrate that this algorithm has the performance close to that of Maximum-Likelihood (ML) algorithm and is a suboptimum blind adaptive multiuser detection algorithm of excellent near-far resistance and low complexity.
文摘Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems.
文摘In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge that is not easily obtained. Therefore, the pilot tones have to be close enough to fulfill the sampling theorem. In this case the statistical knowledge of the channel is not required to reconstruct correctly the channel impulse response (CIR). This paper explores the optimal placement and number of pilot symbols, we investigate optimal training sequences in OFDM systems and we analyze the number of pilot symbols required to fulfill the sampling theorem. Using a general model for a multipath slowly fading channel, the approach is based on the LS as a criterion of channel estimation while the channel interpolation is done using the piecewise-constant interpolation compromising between complexity and performance. Simulation results demonstrate the good performance of our approach.
基金supported by the National Key Laboratory of Electromagnetic Environment(No.202101004)the National Nature Science of China(NSFC)(No.61931001),respectively。
文摘Time-varying channel modeling plays an important role for many applications in time-variant scenarios,while most clustering algorithms focus on static channels and cannot accurately model the channel time-evolution properties.In this paper,a fuzzy clustering algorithm based on multipath component(MPC)trajectory is proposed.Firstly,both the distance and velocity similarities of the MPCs in different snapshots are taken into account to track the MPC trajectory,in which the fuzzy scheme and a kernel function are used to calculate the distance and velocity similarities,respectively.Secondly,a fuzzy MPC trajectory clustering algorithm is proposed to cluster the MPCs in multiple snapshots.The MPCs in a snapshot are clustered according to the membership,which is defined as the probability that a MPC belongs to different clusters.Finally,time-varying channels at 28 GHz are simulated to validate the performance of our proposed algorithm.The results show that our proposed algorithm is able to accurately identify the clusters in time-varying channels compared with the existing clustering algorithms.
基金supported in part by the National Natural Science Foundation of China(No.U22A2001)the National Key Research and Development Program of China(No.2022YFB2902202,No.2022YFB2902205)。
文摘Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.
基金Supported by Jiangsu University Natural Science Re-search Fund (05KJB510090), National Natural Science Foundation of China (No.60472104).
文摘In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the system of IEEE 802.16a with OFDM modulation. First investigated is the influence of channel cstimation schemes on LDPC-code based OFDM system in static and multipath fading channels. According to the different propagation environments in 802.16a system, a dynamic channel estimation scheme is proposed. A good irregular LDPC code is designed with code rate of 1/2 and code length of 1200. Simulation results show that the performance of LDPC coded OFDM system proposed in this paper is better than that of the convolution Turbo coded OFDM system proposed in IEEE standard 802.16a.
基金Supported by the National Natural Science Foundation of China(No.60372014).
文摘In this paper, a Direction Of Arrival (DOA) estimation algorithm is proposed for multiuser signals through uplink asynchronous multipath Code Division Multiple Access (CDMA) channels. The algorithm is based directly on the correlation matrices of matched filter bank outputs of desired user’s multipath signals and it does not require that the elements of base station antenna array outnumber the multipath signals, which is necessary for the conventional sub-space based direction-finding algorithm. Simulation results show that the proposed algorithm estimates the DOA of multipath signals effectively and acceptably. The proposed algorithm has the prominent advantages of low complexity, simpleness and practicality, which make it much more suitable for practical application.
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
文摘For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.
基金supported by National Science and Technology Major Program of the Ministry of Science and Technology (No.2018ZX03001031)Key program of Beijing Municipal Natural Science Foundation (No. L172030)+2 种基金Beijing Municipal Science & Technology Commission Project (No. Z171100005217001)Key Project of State Key Lab of Networking and Switching Technology (NST20170205)National Key Technology Research and Development Program of the Ministry of Science and Technology of China (NO. 2012BAF14B01)
文摘Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.
基金supported by the National Nature Science Foundation of China(NSFC)under grant No.61771194supported by Key Program of Beijing Municipal Natural Science Foundation with No.17L20052
文摘In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall.
基金supported in part by National Natural Science Foundation of China(Grant Nos.61921003,61925101,61831002 and 61901315)in part by the Beijing Natural Science Foundation under(Grant No.JQ18016)in part by the Fundamental Research Funds for the Central Universities(Grant No.2020RC08).
文摘Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of the instantaneous channel state information(CSI)in the cascaded RIS chain makes an indispensable contribution to the performance gains.However,it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel.In this work,a channel estimation scheme for the RIS-assisted wireless communication system is proposed,which is demonstrated to perform well in a time-variant scenario.The cascaded RIS channel is modeled as a state-space model based upon the mobility situations.In addition,to fully exploit the time correlation of channel,Kalman filter is employed by taking the prior information of channels into account.Further,the optimal reflection coefficients are derived according to the minimum mean square error(MMSE)criterion.Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.
基金supported in part by the National Science Fund for Distinguished Young Scholars under Grant 61925102in part by the National Natural Science Foundation of China(62201087&92167202&62101069&62201086)in part by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utilizes a discriminator to calculate the divergence between the predicted downlink channel state information(CSI) and the real sample distributions under a conditional constraint that is previous uplink CSI. The generator of CPcGAN learns the function relationship between the conditional constraint and the predicted downlink CSI and reduces the divergence between predicted CSI and real CSI.The capability of CPcGAN fitting data distribution can capture the time-varying and multipath characteristics of the channel well. Considering the propagation characteristics of real channel, we further develop a channel prediction error indicator to determine whether the generator reaches the best state. Simulations show that the CPcGAN can obtain higher prediction accuracy and lower system bit error rate than the existing methods under the same user speeds.
基金the Key Program of National Natural Science Foundation of China(Grant No.60432040).
文摘SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters,the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling small-scale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions (CDFs) for the three key channel impulse response (CIR) statistics.
基金supported by National Natural Science Foundation of China(No.61471066)。
文摘Millimeter wave(mmWave)massive massive multiple input multiple output(MIMO)technique has been regarded as the viable solution for vehicular communications in 5G and beyond.To achieve the substantial increase in date rates,it is important to take an effective channel state information(CSI).However,existing channel estimation strategies are unavailable since the users high-mobility.To solve above issues,in this paper,inspired by a specific antenna structure,we propose a novel approach for fast time-varying channel estimation.Specifically,by considering the vehicle scenario with high-mobility,a corresponding mathematical model is firstly established.Then,based on the special structural of the sparse array,the switch network is used to replace the convention phase shifter of mmWave hybrid system,which can effectively reduce the number of radio-frequency(RF)chains and antennas.Furthermore,by solving the semidefinite programming(SDP)duality problem,the Doppler frequency and path parameters are effectively estimated.Simulation results are shown that the computational complexity and estimation accuracy of the proposed algorithm is superior than that of the traditional schemes.