The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac...The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris...Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.展开更多
Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechani...Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis.展开更多
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity meas...High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.展开更多
The control of highly contagious disease spreading in campuses is a critical challenge.In residential universities,students attend classes according to a curriculum schedule,and mainly pack into classrooms,dining hall...The control of highly contagious disease spreading in campuses is a critical challenge.In residential universities,students attend classes according to a curriculum schedule,and mainly pack into classrooms,dining halls and dorms.They move from one place to another.To simulate such environments,we propose an agent-based susceptible–infected–recovered model with time-varying heterogeneous contact networks.In close environments,maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention.It can be easily realized by using larger classrooms,adopting staggered dining hours,decreasing the number of students per dorm and so on.Their real-world influence remains uncertain.With numerical simulations,we obtain epidemic thresholds.The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.展开更多
A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy...A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.展开更多
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assu...Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.展开更多
In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN mod...In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall.展开更多
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final...The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.展开更多
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu...Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.展开更多
Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Meth...Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Methods:A retrospective study was conducted from 2014 to 2019 among 453 patients who were admitted to Hospital Sultanah Bahiyah,Kedah and Hospital Tuanku Fauziah,Perlis in Northern Malaysia due to confirmed-cultured melioidosis.The prognostic factors of mortality from melioidosis were obtained from AFT survival analysis,and Cox’s models and the findings were compared by using the goodness of fit methods.The analyses were done by using Stata SE version 14.0.Results:A total of 242 patients(53.4%)survived.In this study,the median survival time of melioidosis patients was 30.0 days(95%CI 0.0-60.9).Six significant prognostic factors were identified in the Cox PH model and Cox PH-TVC model.In AFT survival analysis,a total of seven significant prognostic factors were identified.The results were found to be only a slight difference between the identified prognostic factors among the models.AFT survival showed better results compared to Cox's models,with the lowest Akaike information criteria and best fitted Cox-snell residuals.Conclusions:AFT survival analysis provides more reliable results and can be used as an alternative statistical analysis for determining the prognostic factors of mortality in melioidosis patients in certain situations.展开更多
For high-speed mobile MIMO-OFDM system,a low-complexity deep learning(DL) based timevarying channel estimation scheme is proposed.To reduce the number of estimated parameters,the basis expansion model(BEM) is employed...For high-speed mobile MIMO-OFDM system,a low-complexity deep learning(DL) based timevarying channel estimation scheme is proposed.To reduce the number of estimated parameters,the basis expansion model(BEM) is employed to model the time-varying channel,which converts the channel estimation into the estimation of the basis coefficient.Specifically,the initial basis coefficients are firstly used to train the neural network in an offline manner,and then the high-precision channel estimation can be obtained by small number of inputs.Moreover,the linear minimum mean square error(LMMSE) estimated channel is considered for the loss function in training phase,which makes the proposed method more practical.Simulation results show that the proposed method has a better performance and lower computational complexity compared with the available schemes,and it is robust to the fast time-varying channel in the high-speed mobile scenarios.展开更多
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series...Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.展开更多
文摘The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金supported by the National Natural Science Foundation of China(grant no.52075414).
文摘Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.
基金This work is sponsored by the National Natural Science Foundation of China(Nos.52105117&52105118).
文摘Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis.
基金funded by National Natural Science Foundation of China(U1839207,U1939205)the earthquake tracking directional work task of China Earthquake Administration(No.DZ2022010214)+1 种基金Key project of Spark Program of Seismic Science and Technology of China Earthquake Administration(No.XH20008)S&T Program of Hebei(21375411D)。
文摘High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871234).
文摘The control of highly contagious disease spreading in campuses is a critical challenge.In residential universities,students attend classes according to a curriculum schedule,and mainly pack into classrooms,dining halls and dorms.They move from one place to another.To simulate such environments,we propose an agent-based susceptible–infected–recovered model with time-varying heterogeneous contact networks.In close environments,maintaining physical distancing is the most widely recommended and encouraged non-pharmaceutical intervention.It can be easily realized by using larger classrooms,adopting staggered dining hours,decreasing the number of students per dorm and so on.Their real-world influence remains uncertain.With numerical simulations,we obtain epidemic thresholds.The effect of such countermeasures on reducing the number of disease cases is also quantitatively evaluated.
文摘A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.
基金This research was financially supported by National Natural Science Foundation of China (Grant No. 40604016) and the National Hi-Tech Research and Development Program (863 Program) (Grants No. 2006AA09A102-09 and No. 2007AA06Z229).
文摘Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.
基金supported by the National Nature Science Foundation of China(NSFC)under grant No.61771194supported by Key Program of Beijing Municipal Natural Science Foundation with No.17L20052
文摘In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall.
基金Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
文摘A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.
文摘The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given.
基金The project is partly supported by the National Science Council, Contract Nos. NSC-89-261 l-E-019-024 (JZY), and NSC-89-2611-E-019-027 (CRC).
文摘Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made.
文摘Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Methods:A retrospective study was conducted from 2014 to 2019 among 453 patients who were admitted to Hospital Sultanah Bahiyah,Kedah and Hospital Tuanku Fauziah,Perlis in Northern Malaysia due to confirmed-cultured melioidosis.The prognostic factors of mortality from melioidosis were obtained from AFT survival analysis,and Cox’s models and the findings were compared by using the goodness of fit methods.The analyses were done by using Stata SE version 14.0.Results:A total of 242 patients(53.4%)survived.In this study,the median survival time of melioidosis patients was 30.0 days(95%CI 0.0-60.9).Six significant prognostic factors were identified in the Cox PH model and Cox PH-TVC model.In AFT survival analysis,a total of seven significant prognostic factors were identified.The results were found to be only a slight difference between the identified prognostic factors among the models.AFT survival showed better results compared to Cox's models,with the lowest Akaike information criteria and best fitted Cox-snell residuals.Conclusions:AFT survival analysis provides more reliable results and can be used as an alternative statistical analysis for determining the prognostic factors of mortality in melioidosis patients in certain situations.
基金Supported by the National Science Foundation Program of Jiangsu Province (No.BK20191378)the National Science Research Project of Jiangsu Higher Education Institutions (No.18KJB510034)+2 种基金China Postdoctoral Science Fund Special Funding Project (No.2018T110530)the Key Technologies R&D Program of Jiangsu Province (No.BE2022067,BE2022067-2)Major Research Program Key Project(No.92067201)。
文摘For high-speed mobile MIMO-OFDM system,a low-complexity deep learning(DL) based timevarying channel estimation scheme is proposed.To reduce the number of estimated parameters,the basis expansion model(BEM) is employed to model the time-varying channel,which converts the channel estimation into the estimation of the basis coefficient.Specifically,the initial basis coefficients are firstly used to train the neural network in an offline manner,and then the high-precision channel estimation can be obtained by small number of inputs.Moreover,the linear minimum mean square error(LMMSE) estimated channel is considered for the loss function in training phase,which makes the proposed method more practical.Simulation results show that the proposed method has a better performance and lower computational complexity compared with the available schemes,and it is robust to the fast time-varying channel in the high-speed mobile scenarios.
文摘Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value.