The influence of non-uniqueness in selecting statistical time ranges on seismicity parameters of b value and annual mean occurrence rate ν4 is widely analyzed and studied. The studied result states that the influence...The influence of non-uniqueness in selecting statistical time ranges on seismicity parameters of b value and annual mean occurrence rate ν4 is widely analyzed and studied. The studied result states that the influence of statistical time range on the b value is generally smaller than on the annual mean rate. Owing to the exponentially functional relation between the annual mean rate and b value, the variation of b value by varying statistical time range brings about decrease or increase in the annual mean rates of each magnitude interval with power progression law. These results will exert a synthetic effect on seismic safety evaluation results in various regions in our country.展开更多
Complementary metal oxide semiconductor(CMOS)aging mechanisms including bias temperature instability(BTI)pose growing concerns about circuit reliability.BTI results in threshold voltage increases on CMOS transistors,c...Complementary metal oxide semiconductor(CMOS)aging mechanisms including bias temperature instability(BTI)pose growing concerns about circuit reliability.BTI results in threshold voltage increases on CMOS transistors,causing delay shifts and timing violations on logic circuits.The amount of degradation is dependent on the circuit workload,which increases the challenge for accurate BTI aging prediction at the design time.In this paper,a BTI prediction method for logic circuits based on statistical static timing analysis(SSTA)is proposed,especially considering the correlation between circuit workload and BTI degradation.It consists of a training phase,to discover the relationship between circuit scale and the required workload samples,and a prediction phase,to present the degradations under different workloads in Gaussian probability distributions.This method can predict the distribution of degradations with negligible errors,and identify 50%more BTI-critical paths in an affordable time,compared with conventional methods.展开更多
To achieve a characterization method for the gate delay library used in block based statistical static timing analysis with neither unacceptably poor accuracy nor forbiddingly high cost,we found that general-purpose g...To achieve a characterization method for the gate delay library used in block based statistical static timing analysis with neither unacceptably poor accuracy nor forbiddingly high cost,we found that general-purpose gate delay models are useful as intermediaries between the circuit simulation data and the gate delay models in required forms.In this work,two gate delay models for process variation considering different driving and loading conditions are proposed.From the testing results,these two models,especially the one that combines effective dimension reduction(EDR) from statistics society with comprehensive gate delay models,offer good accuracy with low characterization cost,and they are thus competent for use in statistical timing analysis(SSTA).In addition, these two models have their own value in other SSTA techniques.展开更多
A systematical analysis of the spectral lags in different episodes within a gamma-ray burst (GRB) for the BATSE GRB sample is given. The identified episodes are usually a single pulse with mixing of small fluctuations...A systematical analysis of the spectral lags in different episodes within a gamma-ray burst (GRB) for the BATSE GRB sample is given. The identified episodes are usually a single pulse with mixing of small fluctuations. The spectral lags were calculated for lightcurves in the 25-55 keV and 110-320 keV bands. No universal spectral lag evolution feature in different episodes within a GRB were found for most GRBs. Among 362 bright GRBs that have at least three well-identified episodes, 19 of them show long-to-short lag and 19 of them show short-to-long lag in successive episodes. The other 324 GRBs have no clear evolution trend. Defining the specified lag with the ratio of the spectral lag to the episode duration in 110-320 keV band, no prominent case of specified lag was found showing clear evolution features. The results suggest that the observed spectral lag may contribute to the dynamics and/or the radiation physics of a given emission episode.展开更多
基金Chinese Joint Seismological Science Foundation (100110).
文摘The influence of non-uniqueness in selecting statistical time ranges on seismicity parameters of b value and annual mean occurrence rate ν4 is widely analyzed and studied. The studied result states that the influence of statistical time range on the b value is generally smaller than on the annual mean rate. Owing to the exponentially functional relation between the annual mean rate and b value, the variation of b value by varying statistical time range brings about decrease or increase in the annual mean rates of each magnitude interval with power progression law. These results will exert a synthetic effect on seismic safety evaluation results in various regions in our country.
基金3the High Performance Computing Center of Shanghai University,Shanghai Engineering Research Center of Intelligent Computing System(19DZ2252600)supported by State Key Laboratory of Computer Architecture(Institute of Computing Technology,Chinese Academy of Sciences)(CARCH201909)。
文摘Complementary metal oxide semiconductor(CMOS)aging mechanisms including bias temperature instability(BTI)pose growing concerns about circuit reliability.BTI results in threshold voltage increases on CMOS transistors,causing delay shifts and timing violations on logic circuits.The amount of degradation is dependent on the circuit workload,which increases the challenge for accurate BTI aging prediction at the design time.In this paper,a BTI prediction method for logic circuits based on statistical static timing analysis(SSTA)is proposed,especially considering the correlation between circuit workload and BTI degradation.It consists of a training phase,to discover the relationship between circuit scale and the required workload samples,and a prediction phase,to present the degradations under different workloads in Gaussian probability distributions.This method can predict the distribution of degradations with negligible errors,and identify 50%more BTI-critical paths in an affordable time,compared with conventional methods.
文摘To achieve a characterization method for the gate delay library used in block based statistical static timing analysis with neither unacceptably poor accuracy nor forbiddingly high cost,we found that general-purpose gate delay models are useful as intermediaries between the circuit simulation data and the gate delay models in required forms.In this work,two gate delay models for process variation considering different driving and loading conditions are proposed.From the testing results,these two models,especially the one that combines effective dimension reduction(EDR) from statistics society with comprehensive gate delay models,offer good accuracy with low characterization cost,and they are thus competent for use in statistical timing analysis(SSTA).In addition, these two models have their own value in other SSTA techniques.
基金the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant Nos. 11025313 and 11203008)+1 种基金the Special Foundation for Distinguished Expert Program of Guangxithe Guangxi Natural Science Foundation (Grant No. 2013GXNSFFA019001) and Contract No.2011-135
文摘A systematical analysis of the spectral lags in different episodes within a gamma-ray burst (GRB) for the BATSE GRB sample is given. The identified episodes are usually a single pulse with mixing of small fluctuations. The spectral lags were calculated for lightcurves in the 25-55 keV and 110-320 keV bands. No universal spectral lag evolution feature in different episodes within a GRB were found for most GRBs. Among 362 bright GRBs that have at least three well-identified episodes, 19 of them show long-to-short lag and 19 of them show short-to-long lag in successive episodes. The other 324 GRBs have no clear evolution trend. Defining the specified lag with the ratio of the spectral lag to the episode duration in 110-320 keV band, no prominent case of specified lag was found showing clear evolution features. The results suggest that the observed spectral lag may contribute to the dynamics and/or the radiation physics of a given emission episode.