The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der...The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.展开更多
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this...A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.展开更多
本文基于微分容积法和区域叠加技术提出了微分容积单元法(Differential Cubature Element method,以下简称DCE方法),并用之求解阶梯式变截面Timoshenko梁的自由振动问题。根据梁的变截面情况将其划分为几个单元,在每个单元内应用微分容...本文基于微分容积法和区域叠加技术提出了微分容积单元法(Differential Cubature Element method,以下简称DCE方法),并用之求解阶梯式变截面Timoshenko梁的自由振动问题。根据梁的变截面情况将其划分为几个单元,在每个单元内应用微分容积法将梁的控制微分方程和边界约束方程离散成为一组关于该单元内配点位移的线性代数方程组,将这些方程组写在一起并在各单元之间应用连续性条件和平衡条件得到一组关于整个域内各点位移的齐次线性代数方程组,这是一广义特征值问题,由子空间选代法求解该特征值问题便可求得系统的自振频率。数值算例表明,本方法能稳定收敛、并有较高的数值精度和计算效率。展开更多
文摘The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.
文摘A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.
文摘本文基于微分容积法和区域叠加技术提出了微分容积单元法(Differential Cubature Element method,以下简称DCE方法),并用之求解阶梯式变截面Timoshenko梁的自由振动问题。根据梁的变截面情况将其划分为几个单元,在每个单元内应用微分容积法将梁的控制微分方程和边界约束方程离散成为一组关于该单元内配点位移的线性代数方程组,将这些方程组写在一起并在各单元之间应用连续性条件和平衡条件得到一组关于整个域内各点位移的齐次线性代数方程组,这是一广义特征值问题,由子空间选代法求解该特征值问题便可求得系统的自振频率。数值算例表明,本方法能稳定收敛、并有较高的数值精度和计算效率。