期刊文献+
共找到133,895篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of an electrode-driven hydrogen plasma method for in situ cleaning of tin-based contamination
1
作者 彭怡超 叶宗标 +7 位作者 王思蜀 蒲国 刘显洋 苑聪聪 廖加术 韦建军 余新刚 芶富均 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期73-83,共11页
To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular ti... To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular tin-based contamination consisting of micro-and macroparticles was deposited on silicon via physical vapor deposition(PVD).The electrodedriven hydrogen plasma at different power levels was systematically diagnosed using a Langmuir probe and a retarding field ion energy analyzer(RFEA).Moreover,the magnitude of the self-biasing voltage was measured at different power levels,and the peak ion energy was corrected for the difference between the RFEA measurements and the self-biasing voltage(E_(RFEA)-eV_(self)).XPS analysis of O 1s and Sn 3d peaks demonstrated the chemical reduction process after 1 W cleaning.Analysis of surface and cross-section morphology revealed that holes emerged on the upper part of the macroparticles while its bottom remained smooth.Hills and folds appeared on the upper part of the microparticles,confirming the top-down cleaning mode with hydrogen plasma.This study provides an in situ electrode-driven hydrogen plasma etching process for tin-based contamination and will provide meaningful guidance for understanding the chemical mechanism of reduction and etching. 展开更多
关键词 tin-based contamination hydrogen plasma in situ cleaning ion energy
下载PDF
Chlorofullerene C_(60)Cl_(6) Enables Efficient and Stable Tin-Based Perovskite Solar Cells
2
作者 Jingfu Chen Chengbo Tian +8 位作者 Chao Sun Panpan Yang Wenjing Feng Lingfang Zheng Liu Yang Enlong Hou Jiefeng Luo Liqiang Xie Zhanhua Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期176-183,共8页
Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to po... Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials. 展开更多
关键词 crystallization regulation defect passivation fullerene derivative perovskites solar cell tin-based perovskite
下载PDF
Preparation of FeCoNi medium entropy alloy from Fe^(3+)-Co^(2+)-Ni^(2+)solution system
3
作者 Zongyou Cheng Qing Zhao +3 位作者 Mengjie Tao Jijun Du Xingxi Huang Chengjun Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期92-101,共10页
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro... In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity. 展开更多
关键词 medium entropy alloy SOL-GEL CO-PRECIPITATION carbothermal hydrogen reduction
下载PDF
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
4
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
5
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
6
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
Interface microstructure and properties of submerged arc brazing tin-based babbit 被引量:2
7
作者 Zhou Fangming Li Jing +1 位作者 Xu Donghao Shi Mingxiao 《China Welding》 EI CAS 2019年第2期45-49,共5页
The submerged arc brazing method was used to connect the tin-based babbit alloy with the steel matrix.The microstructure of the submerged arc brazed Babbitt interface layer on the surface of Q235 B steel was analyzed ... The submerged arc brazing method was used to connect the tin-based babbit alloy with the steel matrix.The microstructure of the submerged arc brazed Babbitt interface layer on the surface of Q235 B steel was analyzed by OM,SEM and EDS and the hardness properties of the joint interface layer were tested by MH-5 microhardness tester.the result of research shows that a layer of canine-shaped intermetallic compound with uneven thickness is formed at the interface,and the thickness is 10-20 μm.The interface layer includes two kinds of compound layers,namely the Fe Sn layer near the side of the steel substrate and FeSn layer near the side of the babbit.During the interfacial reaction process,Fe atoms in the steel matrix dissolve into the liquid babbit alloy and form a certain concentration gradient at the interface.The farther from the interface,the lower the Fe atom concentration.The growth of Gibbs free energy of Fe Sn is lower when the temperature is above 780.15 K,and the temperature during the welding process is much higher than 780.15 K,moreover the precipitation temperature of Fe Sn is higher.Therefore,in the subsequent cooling process,Fe Sn is first precipitated from the interface near the side of steel matrix and then FeSn is precipitated from the interface near the side of babbit alloy.Microhardness test showed that the intermetallic compound at the interface layer significantly improved the hardness properties. 展开更多
关键词 tin-based BABBITT alloy SUBMERGED arc brazing interfacial structure INTERMETALLIC compound hardness
下载PDF
Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells 被引量:1
8
作者 Xiaomeng Li Pengcheng Jia +7 位作者 Fanwen Meng Xingyu Zhang Yang Tang Bo Song Chang Gao Liang Qin Feng Teng Yanbing Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1965-1972,共8页
The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,... The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells.Herein,propylamine hydrobromide(PABr)was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films.Because propylamine cations are too large to enter the perovskite lattices,they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation.The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm^(-2)by reducing carrier recombination induced by defects.Furthermore,the device’s long-term illumination stability is improved after optimization,and the hysteresis effect is negligible.The addition of PABr results in a power conversion efficiency of 9.35%. 展开更多
关键词 tin-based perovskite solar cells propylamine hydrobromide PASSIVATION crystallization
下载PDF
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization 被引量:2
9
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE alloy design Machine learning Bayesian optimization
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
10
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
A new Tin-based O3-Na_(0.9)[Ni_(0.45-x/2)Mn_xSn_(0.55-x/2)]O_2 as sodium-ion battery cathode
11
作者 Xiaohui Rong Xingguo Qi +8 位作者 Yaxiang Lu Yuesheng Wang Yunming Li Liwei Jiang Kai Yang Fei Gao Xuejie Huang Liquan Chen Yong-Sheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期132-137,共6页
Recently,sodium-ion batteries(SIBs),regarded as promising supplements for lithium-ion batteries(LIBs),especially in the large-scale energy storage field,are attracting more and more attention.However,the limited suita... Recently,sodium-ion batteries(SIBs),regarded as promising supplements for lithium-ion batteries(LIBs),especially in the large-scale energy storage field,are attracting more and more attention.However,the limited suitable cathode materials hinder the wide commercialization of SIBs.Given this aspect,in this work,a new layered oxide with 4d metal Tin was synthesized and investigated as cathode material for SIBs.Two optimized sodium-deficient O3-Na_(0.9)Ni_(0.45)Sn_(0.55)O_2and O3-Na_(0.9)Ni_(0.4)Mn_(0.1)Sn_(0.5)O_2were selected for comprehensive investigation,both of which exhibited high operating voltage of around 3.45 V with smooth charge/discharge curves.In comparison,O3-Na_(0.9)Ni_(0.4)Mn_(0.1)Sn_(0.5)O_2shows a higher reversible capacity(65 m A h/g,0.1 C),better rate capability and cycling stability than that of O3-Na_(0.9)Ni_(0.45)Sn_(0.55)O_2(50 mA h/g,0.1 C),indicating that a small amount of Mn-substitution can improve the electrochemical performance.This work presents a new possibility of discovering potential cathode candidates by exploring the Tin-based layered oxides. 展开更多
关键词 Sodium-ion batteries Layered oxide CATHODE tin-based CATHODE
下载PDF
Influence of Metalloid Elements on the Magnetic Properties and Anisotropy of FeNi-based Amorphous Alloys
12
作者 熊湘沅 何开元 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第2期117-120,共4页
The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-pre... The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's. 展开更多
关键词 amorphous alloy magnetic property ANISOTROPY
下载PDF
Interfacial engineering in lead-free tin-based perovskite solar cells
13
作者 Zhenxi Wan Huagui Lai +9 位作者 Shengqiang Ren Rui He Yiting Jiang Jincheng Luo Qiyu Chen Xia Hao Ye Wang Jingquan Zhang Lili Wu Dewei Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期147-168,I0005,共23页
Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfac... Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs. 展开更多
关键词 tin-based perovskites Perovskite solar cells Interfacial engineering Environment-friendly Energy level alignment
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
14
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
15
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Influence of heat treatment on microstructure,mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion 被引量:6
16
作者 Chenrong Ling Qiang Li +6 位作者 Zhe Zhang Youwen Yang Wenhao Zhou Wenlong Chen Zhi Dong Chunrong Pan Cijun Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期258-275,共18页
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe... Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility. 展开更多
关键词 laser-beam powder bed fusion WE43 alloys heat treatment mechanical performance biodegradation behavior
下载PDF
Alloy design for laser powder bed fusion additive manufacturing:a critical review 被引量:3
17
作者 Zhuangzhuang Liu Qihang Zhou +4 位作者 Xiaokang Liang Xiebin Wang Guichuan Li Kim Vanmeensel Jianxin Xie 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期29-63,共35页
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi... Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work. 展开更多
关键词 laser powder bed fusion alloy design PRINTABILITY crack mitigation
下载PDF
Influence of charge transport layer on the crystallinity and charge extraction of pure tin-based halide perovskite film
18
作者 Yaohong Zhang Muhammad Akmal Kamarudin +9 位作者 Qiao Li Chao Ding Yong Zhou Yingfang Yao Zhigang Zou Satoshi Iikubo Takashi Minemoto Kenji Yoshino Shuzi Hayase Qing Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期612-615,I0017,共5页
As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potentia... As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potential of halide PVK solar cells as a highly competitive substitute to replace silicon-based solar cells in the photovoltaic market [2–6]. 展开更多
关键词 tin-based halide perovskite Charge transport layers CRYSTALLINITY Charge extraction Photoexcited carrier dynamics
下载PDF
Recent innovations in laser additive manufacturing of titanium alloys 被引量:1
19
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells
20
作者 Xu Zhao Shoudeng Zhong +2 位作者 Shuqi Wang Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2451-2458,共8页
The commercialized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)is usually used as hole transport layers(HTLs)in tin-based perovskite solar cells(TPSCs).However,the further development has been re... The commercialized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)is usually used as hole transport layers(HTLs)in tin-based perovskite solar cells(TPSCs).However,the further development has been restricted due to the acidity that could damage the stability of TPSCs.Although the PEDOT:PSS solution can be diluted by water to decrease acidity and reduce the cost of device fabrication,the electrical conductivity will decrease obviously in diluted PEDOT:PSS solution.Herein,potassium thiocyanate(KSCN)is selected to regulate the properties of PEDOT:PSS HTLs from the diluted PEDOT:PSS aqueous solution by water with a volume ratio of 1:1 to prepare efficient TPSCs.The effect of KSCN addition on the structure and photoelectrical properties of PEDOT:PSS HTLs and TPSCs have been systematically studied.At the optimal KSCN concentration,the TPSCs based on KSCN-doped PEDOT:PSS HTLs(KSCN-PSCs)demonstrate the champion power conversion efficiency(PCE)of 8.39%,while the reference TPSCs only show a champioan PCE of 6.70%.The further analysis demonstrates that the KSCN additive increases the electrical conductivity of HTLs prepared by the diluted PEDOT:PSS solution,improves the microstructure of perovskite film,and inhibits carrier recombination in TPSCs,leading to the reduced hysteresis effect and enhanced PCE in KSCN-PSCs.This work gives a low-cost and practical strategy to develop a high-quality PEDOT:PSS HTLs from diluted PEDOT:PSS aqueous solution for efficient TPSCs. 展开更多
关键词 potassium thiocyanate diluted PEDOT:PSS solution tin-based perovskite solar cells photovoltaic performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部