期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Advanced optical methods and materials for fabricating 3D tissue scaffolds
1
作者 Xiaobo Li Wanping Lu +2 位作者 Xiayi Xu Yintao Wang Shih-Chi Chen 《Light(Advanced Manufacturing)》 2022年第3期28-59,共32页
Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing t... Three-dimensional(3D)printing,also known as additive manufacturing(AM),has undergone a phase of rapid development in the fabrication of customizable and high-precision parts.Thanks to the advancements in 3D printing technologies,it is now a reality to print cells,growth factors,and various biocompatible materials altogether into arbitrarily complex 3D scaffolds with high degree of structural and functional similarities to the native tissue environment.Additionally,with overpowering advantages in molding efficiency,resolution,and a wide selection of applicable materials,optical 3D printing methods have undoubtedly become the most suitable approach for scaffold fabrication in tissue engineering(TE).In this paper,we first provide a comprehensive and up-to-date review of current optical 3D printing methods for scaffold fabrication,including traditional extrusion-based processes,selective laser sintering,stereolithography,and two-photon polymerization etc.Specifically,we review the optical design,materials,and representative applications,followed by fabrication performance comparison.Important metrics include fabrication precision,rate,materials,and application scenarios.Finally,we summarize and compare the advantages and disadvantages of each technique to guide readers in the optics and TE communities to select the most fitting printing approach under different application scenarios. 展开更多
关键词 3D printing tissue scaffolds Optical fabrication
原文传递
Nanofibrous scaffolds for the regeneration of nervous tissue
2
作者 Aijun Wang,Yiqian Zhu,Song Li(Department of Bioengineering,University of California,Berkeley,Berkeley,CA 94720,USA.) 《医用生物力学》 EI CAS CSCD 2010年第S1期20-21,共2页
Introductons The biophysical organization of extracellular matrix (ECM) plays an important role in tissue morphogenesis,remodeling and functions. In many types of tissues,e. g. ,blood vessel,nerve,heart,muscle,tendon ... Introductons The biophysical organization of extracellular matrix (ECM) plays an important role in tissue morphogenesis,remodeling and functions. In many types of tissues,e. g. ,blood vessel,nerve,heart,muscle,tendon and ligament,ECM has aniso- 展开更多
关键词 Nanofibrous scaffolds for the regeneration of nervous tissue PLLA
下载PDF
Solid freeform fabrication of bone tissue engineering scaffolds
3
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第2期74-77,共4页
关键词 Solid freeform fabrication of bone PLLA tissue engineering scaffolds
下载PDF
Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends 被引量:13
4
作者 Nurettin Sezer Zafer Evis Muammer Koç 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期392-415,共24页
Synthetic grafting needs improvements to eliminate secondary surgeries for the removal of implants after healing of the defected tissues.Tissue scaffolds are engineered to serve as temporary templates,which support th... Synthetic grafting needs improvements to eliminate secondary surgeries for the removal of implants after healing of the defected tissues.Tissue scaffolds are engineered to serve as temporary templates,which support the affected tissue and gradually degrade through the healing period.Beside mechanical function to withstand the anatomic loading conditions,scaffolds should also provide a decent biological function for the diffusion of nutrients and oxygen to the cells,and excretion of the wastes from the cells to promote the new tissue growth and vascularization.Moreover,the degradation byproducts of the scaffolds should be safe to the human body.Development of such multifunctional scaffolds requires selection of the right material,design,and manufacturing method.Mg has been recognized as the prominent biodegradable metal with regards to its mechanical properties matching to that of human bone,degradability in the body fluid,and its ability to stimulate new tissue growth.Scaffolds with intricate porous structures can be designed according to the patient-specific anatomic data using computer aided designs.Additive manufacturing(AM)is the right method to materialize these models rapidly with reasonably acceptable range of dimensional accuracy.Thus,the recent research trend is to develop ideal scaffolds using biodegradable Mg through AM methods.This review compiles and discusses the available literature on the AM of biodegradable Mg parts from the viewpoints of material compositions,process conditions,formation quality,dimensional accuracy,microstructure,biodegradation,and mechanical properties.The current achievements are summarized together,and future research directions are identified to promote clinical applications of biodegradable Mg through the advancement of AM. 展开更多
关键词 MAGNESIUM ALLOY IMPLANT tissue scaffold Additive manufacturing BIODEGRADATION
下载PDF
Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering 被引量:3
5
作者 Jun-Xi Xiang Xing-Long Zheng +4 位作者 Rui Gao Wan-Quan Wu Xu-Long Zhu Jian-Hui Li Yi Lv 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2015年第5期502-508,共7页
BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoo... BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoonosis and immunological rejection. We proposed that the spleen, which procured more extensively than the liver, could be an ideal source of decellularized scaffold for liver regeneration. METHODS: After harvested from donor rat, the spleen was processed by 12-hour freezing/thawing ×2 cycles, then circulation perfusion of 0.02% trypsin and 3% Triton X-100 sequentially through the splenic artery for 32 hours in total to prepare decellularized scaffold. The structure and component characteristics of the scaffold were determined by hematoxylin and eosin and immumohistochemical staining, scanning electron microscope, DNA detection, porosity measurement, biocompatibility and cytocompatibility test. Recellularization of scaffold by 5×106 bone marrow mesenchymal stem cells(BMSCs) was carried out to preliminarily evaluate the feasibility of liver regeneration by BMSCs reseeding and differentiation in decellularized splenic scaffold.RESULTS: After decellularization, a translucent scaffold, which retained the gross shape of the spleen, was generated. Histological evaluation and residual DNA quantitation revealed the remaining of extracellular matrix without nucleus and cytoplasm residue. Immunohistochemical study proved the existence of collagens I, IV, fibronectin, laminin and elastin in decellularized splenic scaffold, which showed a similarity with decellularized liver. A scanning electron microscope presented the remaining three-dimensional porous structure of extracellular matrix and small blood vessels. The poros-ity of scaffold, aperture of 45.36±4.87 μm and pore rate of 80.14%±2.99% was suitable for cell engraftment. Subcutaneous implantation of decellularized scaffold presented good histocompatibility, and recellularization of the splenic scaffold demonstrated that BMSCs could locate and survive in the decellularized matrix. CONCLUSION: Considering the more extensive organ source and satisfying biocompatibility, the present study indicated that the three-dimensional decellularized splenic scaffold might have considerable potential for liver regeneration when combined with BMSCs reseeding and differentiation. 展开更多
关键词 tissue engineering liver regeneration decellularized scaffold spleen bone marrow mesenchymal stem cells
下载PDF
A Systematic Review of Animal and Clinical Studies on the Use of Scaffolds for Urethral Repair 被引量:3
6
作者 祁娜 李文娇 田虹 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第1期111-117,共7页
Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in... Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in animal studies, but clinical studies on use of scaffolds for urethral repair are scarce. The aim of this study was to review recent animal and clinical studies on the use of different scaffolds for urethral repair, and to evaluate these scaffolds based on the evidence from these studies. Pub Med and OVID databases were searched to identify relevant studies, in conjunction with further manual search. Studies that met the inclusion criteria were systematically evaluated. Of 555 identified studies, 38 were included for analysis. It was found that in both animal and clinical studies, scaffolds seeded with cells were used for repair of large segmental defects of the urethra, such as in tubular urethroplasty. When the defect area was small, cell-free scaffolds were more likely to be applied. A lot of pre-clinical and limited clinical evidence showed that natural or artificial materials could be used as scaffolds for urethral repair. Urinary tissue engineering is still in the immature stage, and the safety, efficacy, cost-effectiveness of the scaffolds are needed for further study. 展开更多
关键词 material/scaffold urethral repair tissue engineering/regenerative medicine animal models clinical studies
下载PDF
The Construction of Heparin Sulfate-collagen Protein Based Scaffolds and Its Effects on the Neural Stem Cells
7
作者 周昌伟 王岩松 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期103-107,共5页
The objective of this study was to construct the heparin sulfate-collagen pro-tein-based scaffolds and to explore its effects on the proliferation and differentiation abilities of neural stem cells(NSCs).The heparin s... The objective of this study was to construct the heparin sulfate-collagen pro-tein-based scaffolds and to explore its effects on the proliferation and differentiation abilities of neural stem cells(NSCs).The heparin sulfate-collagen protein-based scaffolds were produced by injection molding/freezing/cross-linking technique.The proliferation ability was detected by MTT and the dif-ferentiation ability was detected by immunofluorescence technique.The results indicate that the heparin sulfate-collagen protein-based scaffolds with porous and longitudinal parallel structures are successfully constructed.The NSCs grow well in the pores of scaffold and still maintain the prolif-eration and differentiation abilities.It is concluded that the scaffolds possess stable porous and longi-tudinal parallel structures and great biocompatibility to NSCs.The combination of scaffold and NSCs may suggest a possible treatment strategy for spinal cord injury 展开更多
关键词 neural stem cell nerve regeneration tissue engineering scaffold
下载PDF
Design,fabrication and application of tissue engineering used cells scaffold
8
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第2期47-49,共3页
关键词 CELL Design fabrication and application of tissue engineering used cells scaffold
下载PDF
Efficient calculation of fluid-induced wall shear stress within tissue engineering scaffolds by an empirical model
9
作者 Husham Ahmed Matthew Bedding-Tyrrell +3 位作者 Davide Deganello Zhidao Xia Yi Xiong Feihu Zhao 《Medicine in Novel Technology and Devices》 2023年第2期267-271,共5页
Mechanical stimulation,such as fluid-induced wall shear stress(WSS),is known that can influence the cellular behaviours.Therefore,in some tissue engineering experiments in vitro,mechanical stimulation is applied via b... Mechanical stimulation,such as fluid-induced wall shear stress(WSS),is known that can influence the cellular behaviours.Therefore,in some tissue engineering experiments in vitro,mechanical stimulation is applied via bioreactors to the cells in cell culturing to study cell physiology and pathology.In 3D cell culturing,porous scaffolds are used for housing the cells.It is known that the scaffold porous geometries can influence the scaffold permeability and internal WSS in a bioreactor(such as perfusion bioreactor).To calculate the WSS generated on cells within scaffolds,usually computational fluid dynamics(CFD)simulation is needed.However,the limitations of the computational method for WSS calculation are:(i)the high time cost of the CFD simulation(in particular for the highly irregular geometries);(ii)accessibility to the CFD model for some cell culturing experimentalists due to the knowledge gap.To address these limitations,this study aims to develop an empirical model for calculating the WSS based on scaffold permeability.This model can allow the tissue engineers to efficiently calculate the WSS generated within the scaffold and/or determine the bioreactor loading without performing the computational simulations. 展开更多
关键词 Wall shear stress PERMEABILITY Empirical model tissue engineering scaffold BIOREACTOR
原文传递
AB085.E-beam sterilization of recombinant human collagen-phosphorylcholine corneal implants for transplantation
10
作者 Fiona Simpson Joel Edin +6 位作者 Mohammed Mirazol Islam Oleksiy Buznyk Monika Ljunggren Kozak Aneta Liszka Kim Merrett Håkan Per Fagerholm Gustafsson May Griffith 《Annals of Eye Science》 2018年第1期491-491,共1页
Background:The sterilization of corneal implants composed of carbodiimide crosslinked recombinant human collagen type III(RHCIII)and phosphorylcholine polymers(RHCIII-MPC)is constrained by the biochemical properties o... Background:The sterilization of corneal implants composed of carbodiimide crosslinked recombinant human collagen type III(RHCIII)and phosphorylcholine polymers(RHCIII-MPC)is constrained by the biochemical properties of RHCIII.Early human trials used 1%chloroform in 0.1 M phosphate buffered saline(C-PBS),but require a stringent wash procedure with antibiotics to remove the chloroform.Irradiation with gamma or electron-beam(e-beam)allows a chemical-free sterilization method,but may result in crosslinking or denaturation.Here,electron-beam irradiation is evaluated as a sterilization method for RHCIII-MPC implants.Methods:Dose-finding study:RHCIII-MPC were cast in round,350µm thick,12 mm diameter molds for corneal implants and 0.5 mm thick dumbbell-shaped molds for mechanical testing.The hydrogels received an irradiation dose of 17,19,or 21 kGy and unirradiated controls were stored in C-PBS,n=3 per group.The hydrogels were tested for sterility and endotoxin,optical and mechanical properties,biodegradation,free radicals,and cell compatibility.Clinical evaluation in rabbits:RHCIII-MPC implants were e-beamed at 17 kGy or kept in C-PBS.One implant from each group was implanted into the right cornea of each rabbit by deep anterior lamellar keratoplasty,n=4 animals per group.Animals underwent preoperative and 6-month post-operative in vivo confocal microscopy(IVCM)to check nerve count and ingrowth of keratocytes.Corneal grafts and controls were assessed via histology and immunohistochemistry.Results:Dose finding study:hydrogels were sterile at all irradiation doses with no evidence of free radicals.There were no significant differences in optical or mechanical properties between the treatment groups and controls.All hydrogels supported cell growth.The 19 and 21 kGy implants had high collagenase degradation for 21 hours until they stabilized,whereas the 17 kGy and C-PBS implants had gradual degradation until 48 hours.Clinical results:the rabbits did not experience post-surgical inflammatory reactions and full epithelial coverage of the implants occurred within the first week of surgery for all animals.Mild neovascularization occurred in all animals,but resolved by 6-month follow-up.A mild 0.5-1.0 grade subepithelial haze was observed in all rabbits,but the implanted grafts remained transparent.Re-innervation occurred in all grafts with no significant differences between sterilization methods.All regenerated corneas had mucin production and were positive for cytokeratin 3 and 12.Grafted and control corneas were negative for macrophages and blood vessels.Conclusions:E-beam sterilization is a safe and effective form of sterilization for RHCIII-MPC implants. 展开更多
关键词 CORNEA collagen tissue scaffolds implant regenerative medicine
下载PDF
3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration
11
作者 Suhun Chae Uijung Yong +6 位作者 Wonbin Park Yoo-mi Choi In-Ho Jeon Homan Kang Jinah Jang Hak Soo Choi Dong-Woo Cho 《Bioactive Materials》 SCIE CSCD 2023年第1期611-625,共15页
Owing to the prevalence of rotator cuff(RC)injuries and suboptimal healing outcome,rapid and functional regeneration of the tendon-bone interface(TBI)after RC repair continues to be a major clinical challenge.Given th... Owing to the prevalence of rotator cuff(RC)injuries and suboptimal healing outcome,rapid and functional regeneration of the tendon-bone interface(TBI)after RC repair continues to be a major clinical challenge.Given the essential role of the RC in shoulder movement,the engineering of biomimetic multi-tissue constructs presents an opportunity for complex TBI reconstruction after RC repair.Here,we propose a gradient cell-laden multi-tissue construct combined with compositional gradient TBI-specific bioinks via 3D cell-printing technology.In vitro studies demonstrated the capability of a gradient scaffold system in zone-specific inducibility and multi-tissue formation mimicking TBI.The regenerative performance of the gradient scaffold on RC regeneration was determined using a rat RC repair model.In particular,we adopted nondestructive,consecutive,and tissue-targeted near-infrared fluorescence imaging to visualize the direct anatomical change and the intricate RC regeneration progression in real time in vivo.Furthermore,the 3D cell-printed implant promotes effective restoration of shoulder locomotion function and accelerates TBI healing in vivo.In summary,this study identifies the therapeutic contribution of cell-printed constructs towards functional RC regeneration,demonstrating the translational potential of biomimetic gradient constructs for the clinical repair of multi-tissue interfaces. 展开更多
关键词 3D cell-printing tissue-specific bioink Gradient tissue scaffolds Near-infrared fluorophores Rotator cuff repair
原文传递
Challenges and Solutions for the Additive Manufacturing of H) Biodegradable Magnesium Implants 被引量:16
12
作者 Yinchuan Wang Penghuai Fu +5 位作者 Nanqing Wang Liming Peng Bin Kang Hui Zeng Guangyin Yuan Wenjiang Ding 《Engineering》 SCIE EI 2020年第11期1267-1275,共9页
Due to their capability of fabricating geometrically complex structures,additive manufacturing(AM)techniques have provided unprecedented opportunities to produce biodegradable metallic implants—especially using Mg al... Due to their capability of fabricating geometrically complex structures,additive manufacturing(AM)techniques have provided unprecedented opportunities to produce biodegradable metallic implants—especially using Mg alloys,which exhibit appropriate mechanical properties and outstanding biocompatibility.However,many challenges hinder the fabrication of AM-processed biodegradable Mg-based implants,such as the difficulty of Mg powder preparation,powder splash,and crack formation during the AM process.In the present work,the challenges of AM-processed Mg components are analyzed and solutions to these challenges are proposed.A novel Mg-based alloy(Mg-Nd-Zn-Zr alloy,JDBM)powder with a smooth surface and good roundness was first synthesized successfully,and the AM parameters for Mg-based alloys were optimized.Based on the optimized parameters,porous JDBM scaffolds with three different architectures(biomimetic,diamond,and gyroid)were then fabricated by selective laser melting(SLM),and their mechanical properties and degradation behavior were evaluated.Finally,the gyroid scaffolds with the best performance were selected for dicalcium phosphate dihydrate(DCPD)coating treatment,which greatly suppressed the degradation rate and increased the cytocompatibility,indicating a promising prospect for clinical application as bone tissue engineering scaffolds. 展开更多
关键词 Additive manufacturing Selective laser melting Biodegradable Mg alloys tissue engineering scaffolds Surface treatment
下载PDF
Preparation and Characterization of Poly(γ-glutamic acid) Hydrogels as Potential Tissue Engineering Scaffolds 被引量:4
13
作者 Wen Zeng Wei-kang Hu +4 位作者 Hao Li Yi-han Jing Hua Kang Qing Jiang 张超 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第11期1507-1514,共8页
In this paper, methacrylated γ-PGA(m PGA) precursor was synthesized via reaction between γ-PGA and glycidyl methacrylate(GMA). Hydrogels from this precursor were prepared under 365 nm ultraviolet irradiation. Th... In this paper, methacrylated γ-PGA(m PGA) precursor was synthesized via reaction between γ-PGA and glycidyl methacrylate(GMA). Hydrogels from this precursor were prepared under 365 nm ultraviolet irradiation. The swelling behavior and mechanical properties were studied in detail as functions of the degree of substitution(DS), precursor concentration, and environmental p H. Results showed that the crosslink density, swelling kinetics and mechanical properties of the hdyrogel could be tailored by adjusting the DS and concentration of the precursor as well as the environmental p H. Three-dimensional photo-encapsulation of swine cartilage chondrocytes and Live/Dead assay proved the cytocompatibility of the hydrogel. 展开更多
关键词 Poly(γ-glutamic) acid HYDROGEL tissue engineering scaffold.
原文传递
3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering:Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties 被引量:12
14
作者 Ting Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期889-900,共12页
Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we construct... Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layerby-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaf- folds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encap-sulate cells or drugs. 展开更多
关键词 Bioplotting tissue engineering scaffolds Gelatin Alginate
原文传递
Aligned Fibrous Scaffold Induced Aligned Growth of Corneal Stroma Cells in vitro Culture 被引量:1
15
作者 GAO Yan YAN Jing +2 位作者 CUI Xue-jun WANG Hong-yan WANG Qing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第6期1022-1025,共4页
To investigate the contribution of fibre arrangement to guiding the aligned growth of corneal stroma cells,aligned and randomly oriented fibrous scaffolds of gelatin and poly-L-lactic acid(PLLA) were fabricated by e... To investigate the contribution of fibre arrangement to guiding the aligned growth of corneal stroma cells,aligned and randomly oriented fibrous scaffolds of gelatin and poly-L-lactic acid(PLLA) were fabricated by electrospinning.A comparative study of two different systems with corneal stroma cells on randomly organized and aligned fibres were conducted.The efficiency of the scaffolds for inducing the aligned growth of cells was assessed by morphological observation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT) assay.Results show that the cells cultured on both randomly oriented and aligned scaffolds maintained normal morphology and well spreading as well as long term proliferation.Importantly,corneal stroma cells grew high orderly on the aligned scaffold,while the cells grew disordered on the randomly oriented scaffold.Moreover,the cells exhibited higher viability in aligned scaffold than that in randomly oriented scaffold.These results indcate that electrospinng to prepare aligned fibrous scaffolds has provided an effective approach to the aligned growth of corneal stroma cells in vitro.Our findings that fiber arrangement plays a crucial role in guiding the aligned growth of cells may be helpful to the development of better biomaterials for tissue engineered cornea. 展开更多
关键词 Electrospnning Fiber alignment Stroma cells proliferation tissue engineering scaffold
下载PDF
Electrospinning and Electrospun Nanofibers 被引量:2
16
作者 Lefayet Sultan Lipol Md. Moshiur Rahman 《World Journal of Nano Science and Engineering》 2016年第2期45-50,共6页
Electro-spinning is a very modern process which can be used in various purposes. We did this experimental work at Swerea IVF in Sweden during M. Sc in Textile Technology programme at University of Bor?s. We should esp... Electro-spinning is a very modern process which can be used in various purposes. We did this experimental work at Swerea IVF in Sweden during M. Sc in Textile Technology programme at University of Bor?s. We should especially thank our supervisor—Anna Thorvaldsson and course teacher—Ioannis S. Chronakis. In this report, we have tried to explain the basic manufacturing techniques of the electrospun nanofiber by the electro-spinning, how one can characterize it by SEM (Scanning Electron Microscopy) and its various applications in the practical field, e.g wound healing, Tissue Engineering Scaffold. The experimental work helped us a lot to gather sufficient knowledge about the electro-spinning process which we wanted to share with all. 展开更多
关键词 Nano-Fibers tissue Engineering Scaffold Nano-Collagen Cartilage and Bones Bladder and Kidney SEM (Scanning Electron Microscopy)
下载PDF
In vitro Mineralization Behavior of the Sol-gel Derived Bioglass/Collegen Composite Porous Scaffold
17
作者 陈晓峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期22-23,34,共3页
The porous scaffold of the sol-gel derived bioactive glass (BG) in the system CaO-P2O5-SiO2 was treated with the type Ⅰ collagen solution. The pore walls of the scaffold were covered by the collagenous network. The... The porous scaffold of the sol-gel derived bioactive glass (BG) in the system CaO-P2O5-SiO2 was treated with the type Ⅰ collagen solution. The pore walls of the scaffold were covered by the collagenous network. The in vitro mineralization behavior of the sol- gel derived bioglassl collegen composite porous scaffold was investigated by immersion in supersaturated calcification solution ( SCS ) at 37℃ for different times, XRD , FTIR, SEM/ EDAX techniques were applied to analyze the crystalline phases, morphology and composition of the minerals formed on the pore walls of the scaffold. It was found that with increasing of immersion time, the morphology of reaction products on the pore walls changed from the spherical particles of calcium phosphate to the flake-like HCA crystals. 展开更多
关键词 collagen SOL-GEL bioactive glass tissue engineering scaffold hydroxyl-carbonateapatite HCA
下载PDF
Three-dimensionally Perforated Calcium Phosphate Ceramics
18
作者 Atsuo Ito T Sakurai +3 位作者 Y Sogo M Ikeuchi H Ohgushi T Mutsuzaki 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期223-225,共3页
Porous calcium phosphate ceramics were produced by compression molding using a special mold followed by sintering. The porous calcium phosphate ceramics have three-dimensional and penetrated open pores 380-400μm in... Porous calcium phosphate ceramics were produced by compression molding using a special mold followed by sintering. The porous calcium phosphate ceramics have three-dimensional and penetrated open pores 380-400μm in diacneter spaced at intervals of 200μm. The layers of the linear penetration pores alternately lay perpendicular to pore direction. The porosity was 59%-65% . The Ca/ P molar ratios of the porous calcium phos phate ceramics range from 1.5 to 1.85. A binder cantaining methyl cellulose was most effective for preparing the powder compact among vinyl acetate, polyvinyl alcohol, starch, stearic acid, methyl cellulose and their mixtures . Stainless steel, polystyrene, nylon and bamboo were used as the long columnar dies for the penetrated open pores. When polystyrene, nylon and bamboo were used as the long columnar male dies, the dies were burned oat during the sintering process. Using stainless steel as the male dies with the removal of the dies before heat treatment resulted in a higher level of densification of the calcium phosphate ceramic. 展开更多
关键词 calcium phosphate porous ceramic three-dimensionally perforated tissue engineering scaffold tricalcium phosphate
下载PDF
3D printing method for bone tissue engineering scaffold
19
作者 Qiliang Zhang Jian Zhou +4 位作者 Peixuan Zhi Leixin Liu Chaozong Liu Ao Fang Qidong Zhang 《Medicine in Novel Technology and Devices》 2023年第1期56-68,共13页
3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and struct... 3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients.The field of life sciences has received a great deal of attention.However,different 3D printing technologies and materials have their advantages and disadvantages,and there are limitations in clinical application.In this paper,the technology,materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed,and the future development trends and challenges in this field are prospected. 展开更多
关键词 3D printing technology 3D printing materials Bone tissue engineering Bone tissue engineering scaffolds
原文传递
Three-dimensional reconstruction of light microscopy image sections: present and future 被引量:3
20
作者 Yuzhen Wang Rui Xu Gaoxing Luo Jun Wu 《Frontiers of Medicine》 SCIE CAS CSCD 2015年第1期30-45,共16页
Three-dimensional (3D) image reconstruction technologies can reveal previously hidden microstruc-tures in human tissue. However, the lack of ideal, non-destructive cross-sectional imaging techniques is still a probl... Three-dimensional (3D) image reconstruction technologies can reveal previously hidden microstruc-tures in human tissue. However, the lack of ideal, non-destructive cross-sectional imaging techniques is still a problem. Despite some drawbacks, histological sectioning remains one of the most powerful methods for accurate high-resolution representation of tissue structures. Computer technologies can produce 3D representations of interesting human tissue and organs that have been serial-sectioned, dyed or stained, imaged, and segmented for 3D visualization. 3D reconstruction also has great potential in the fields of tissue engineering and 3D printing. This article outlines the most common methods for 3D tissue section reconstruction. We describe the most important academic concepts in this field, and provide critical explanations and comparisons. We also note key steps in the reconstruction procedures, and highlight recent progress in the development of new reconstruction methods. 展开更多
关键词 MICROTOMY 3D imaging computer-assisted image processing 3D printing tissue scaffold
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部