期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Understanding wound healing in obesity
1
作者 Asha Cotterell Michelle Griffin +3 位作者 Mauricio A Downer Jennifer B Parker Derrick Wan Michael T Longaker 《World Journal of Experimental Medicine》 2024年第1期22-32,共11页
Obesity has become more prevalent in the global population.It is associated with the development of several diseases including diabetes mellitus,coronary heart disease,and metabolic syndrome.There are a multitude of f... Obesity has become more prevalent in the global population.It is associated with the development of several diseases including diabetes mellitus,coronary heart disease,and metabolic syndrome.There are a multitude of factors impacted by obesity that may contribute to poor wound healing outcomes.With millions worldwide classified as obese,it is imperative to understand wound healing in these patients.Despite advances in the understanding of wound healing in both healthy and diabetic populations,much is unknown about wound healing in obese patients.This review examines the impact of obesity on wound healing and several animal models that may be used to broaden our understanding in this area.As a growing portion of the population identifies as obese,understanding the underlying mechanisms and how to overcome poor wound healing is of the utmost importance. 展开更多
关键词 OBESITY Wound healing ADIPOKINES tissue fibrosis Diabetes Preclinical animal models Hypertrophic skin scarring Wound tension Metabolic syndrome
下载PDF
Type 2 epithelial mesenchymal transition in vivo: truth or pitfalls? 被引量:5
2
作者 XU Xue-feng DAI Hua-ping 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第18期3312-3317,共6页
Epithelial-mesenchymal transition (EMT) is a process by which fully differentiated epithelial cells undergo a phenotypic conversion and assume a mesenchymal cell phenotype, including elongated morphology, enhanced m... Epithelial-mesenchymal transition (EMT) is a process by which fully differentiated epithelial cells undergo a phenotypic conversion and assume a mesenchymal cell phenotype, including elongated morphology, enhanced migratory and invasiveness capacity, and greatly increased production of extracellular matrix (ECM) components. The EMTs associated with wound healing, tissue regeneration, and organ fibrosis are termed as type 2 EMT. Over the past two decades, emerging evidence suggested that injured epithelial cells, via type 2 EMT, may serve as important sources of fibroblasts and contribute to organ fibrosis, such as kidney, liver, lung and eyes. There is perhaps no doubt that adult epithelial cells can undergo EMT in vitro in response to transforming growth factor (TGF)-131 and other inflammatory or pro-fibrotic stimuli. However, whether type 2 EMT really occurs in vivo, whethers it is actually a source of functional and activated interstitial fibroblasts and whether it contributes to tissue fibrosis have already been the subjects of heated debate. In this review, we will describe the main features of EMT, the major findings of type 2 EMT in vitro, the evidences for and against type 2 EMT in vivo and discuss the heterogeneity and pitfalls of the techniques used to detect EMT during fibrotic diseases. We suggest that in order to ascertain the existence of type 2 EMT in vivo, different proper phenotype markers of epithelial and mesenchymal cells should be jointly used and cell lineage tracking techniques should be standardized and avoid false positives. Finally, we believe that if EMT really occurs and contributes to tissue fibrosis, efforts should be made to block or reverse EMT to attenuate fibrotic process. 展开更多
关键词 epithelial mesenchymal transition tissue fibrosis FIBROBLAST
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部