In a pH 2.4 Britton-Robinson buffer medium, the anthracycline antibiotics mitoxantrone(MXT) could react with metal ions such as Pd(Ⅱ), Co(Ⅱ) and Cu(Ⅱ) to form 1:2(molar ratio) cationic chelates, which fu...In a pH 2.4 Britton-Robinson buffer medium, the anthracycline antibiotics mitoxantrone(MXT) could react with metal ions such as Pd(Ⅱ), Co(Ⅱ) and Cu(Ⅱ) to form 1:2(molar ratio) cationic chelates, which further reacted with the anionic dye titan yellow to form 1:2 ternary ion-association complexes by electrostatic interaction. As a result, the intensity of resonance Rayleigh scattering(RRS) was enhanced greatly. These RRS spectral characteristics of various metal ion systems were similar, and the maximum RRS wavelengths were all located at 454 nm. But the increments of RRS intensities were different in the series of Pd(Ⅱ)〉Co(Ⅱ)〉Cu(Ⅱ). The enhanced RRS intensities were proportional to the concentration of MXT in a range of 0.03-2.4μg/mL and the detection limit(3σ) was 0.009μg/mL for the Pd(Ⅱ) system. In this study, the optimum conditions of the reactions and the effects of foreign substances were investigated, in addition, the composition and reaction mechanism of ion-association complexes were discussed. Thus a highly sensitive, simple and rapid method is proposed for the determination of MXT in urine and serum samples.展开更多
基金Supported by Education Committee of Chongqing City, China(No.KJ081306)
文摘In a pH 2.4 Britton-Robinson buffer medium, the anthracycline antibiotics mitoxantrone(MXT) could react with metal ions such as Pd(Ⅱ), Co(Ⅱ) and Cu(Ⅱ) to form 1:2(molar ratio) cationic chelates, which further reacted with the anionic dye titan yellow to form 1:2 ternary ion-association complexes by electrostatic interaction. As a result, the intensity of resonance Rayleigh scattering(RRS) was enhanced greatly. These RRS spectral characteristics of various metal ion systems were similar, and the maximum RRS wavelengths were all located at 454 nm. But the increments of RRS intensities were different in the series of Pd(Ⅱ)〉Co(Ⅱ)〉Cu(Ⅱ). The enhanced RRS intensities were proportional to the concentration of MXT in a range of 0.03-2.4μg/mL and the detection limit(3σ) was 0.009μg/mL for the Pd(Ⅱ) system. In this study, the optimum conditions of the reactions and the effects of foreign substances were investigated, in addition, the composition and reaction mechanism of ion-association complexes were discussed. Thus a highly sensitive, simple and rapid method is proposed for the determination of MXT in urine and serum samples.