With the continuous development of mineral resources to high altitude areas,the study of sulfide ore flotation in unconventional systems has been emphasized.There is a consensus that moderate oxidation of sulfide ore ...With the continuous development of mineral resources to high altitude areas,the study of sulfide ore flotation in unconventional systems has been emphasized.There is a consensus that moderate oxidation of sulfide ore is beneficial to flotation,but the specific suitable dissolved oxygen value is inconclusive,and there are few studies on sulfide ore flotation under low dissolved oxygen environment at high altitude.In this paper,we designed and assembled an atmosphere simulation flotation equipment to simulate the flotation of pyrite at high altitude by controlling the partial pressure of N_(2)/O_(2) and dissolved oxygen under atmospheric conditions.X-ray photoelectron spec-troscopy(XPS),atomic force microscope(AFM),Fourier transform infrared spectrometer(FT-IR),UV-vis spectrophotometer,zeta po-tential,and contact angle measurements were used to reveal the effects of surface oxidation and agent adsorption on pyrite at high altitude(4600 m dissolved oxygen(DO)=4.0 mg/L).The results of pure mineral flotation indicated that the high altitude and low dissolved oxy-gen environment is favorable for pyrite flotation.Contact angle measurements and XPS analysis showed that the high altitude atmosphere nslows down the oxidation of pyrite surface,facilitates S_(n)^(2-)/S^(0) production and enhances surface hydrophobicity.Electrochemical calcula-tions and zeta potential analysis showed that the influence of atmosphere on the form of pyrite adsorption is small,and the different atmo-spheric conditions are consistent with dixanthogen electrochemical adsorption,with lower Zeta potential under high altitude atmosphere and significant potential shift after sodium isobutyl xanthate(SIBX)adsorption.The results of FT-IR,UV-vis,and AFM analysis showed that SIBX adsorbed more on the surface of pyrite under high altitude atmosphere and adsorbed on the surface in a mesh structure com-posed of column/block.The results of the experimental study revealed the reasons for the easy flotation of sulfide ores at high altitude with less collector dosage,and confirmed that the combined DO-pH regulation is beneficial to achieve more efficient flotation of pyrite.展开更多
This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and...This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.展开更多
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ...The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.展开更多
A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differ...A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.展开更多
Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it...Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.展开更多
Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electr...Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations.展开更多
Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examini...Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examining numerous scanning electron microscope(SEM)images and considering the crystal and aggregate characteristics of minerals,we identified four types of pyrite in the study area:euhedral crystals,irregular aggregates,framboidal aggregates,and metasomatized organisms.Among these types,framboidal aggregates are the most prevalent.The formation mechanism of framboidal pyrite can be categorized into inorganic and organic origins.As inferred from the pyrite characteristics in the study area,the formation mechanism of the metasomatized organisms aligns with the biologically induced mineralization mode of organic origin,whereas the framboidal aggregates are more associated with the biologically controlled mineralization mode of organic origin.This underscores a close relationship between the pyrite formation and organic matter,which in turn indicates that an organic origin is more consistent with the pyrite characteristics observed in this study area.The pyrite morphology can reflect reactive iron concentration.Euhedral pyrite crystals tend to form under a low reactive iron concentration,whereas the formation of framboidal pyrite requires a high reactive iron concentration.Additionally,the type and grain size of pyrite aggregates can reflect variations in the redox conditions of the depositional environment.Pyrite produces positive effects on reservoir storage space,with intercrystalline organic pores,intercrystalline pores,and mold pores associated with pyrite contributing greatly to the storage spaces.展开更多
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the ...The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.展开更多
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-de...The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area.展开更多
The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated...The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.展开更多
Froth flotation is an essential processing technique for upgrading low-grade ores.Flotation separation would not be efficient without chemical surfactants(collectors,depressants,frothers,etc.).Depressants play a criti...Froth flotation is an essential processing technique for upgrading low-grade ores.Flotation separation would not be efficient without chemical surfactants(collectors,depressants,frothers,etc.).Depressants play a critical role in the selective separation of minerals in that they deactivate unfavorable mineral surfaces and hinder them from floating into the flotation concentration zone.Pyrite is the most common and challenging sulfide gangue,and its conventional depressants could be highly harmful to nature and humans.Therefore,using available,affordable,eco-friendly polymers to assist or replace hazardous reagents is mandatory for a green transition.Polysaccharide-based(starch,dextrin,carboxymethyl cellulose,guar gum,etc.)polymers are one of the most used biodegradable depressant groups for pyrite depression.Despite the satisfactory flotation results obtained using these eco-friendly depressants,several gaps still need to be addressed,specifically in investigating surface interactions,adsorption mechanisms,and parameters affecting their depression performance.As a unique approach,this review comprehensively discussed previously conducted studies on pyrite depression with polysaccharide-based reagents.Additionally,practical suggestions have been provided for future assessments and developments of polysaccharide-based depressants,which pave the way to green flotation.This robust review also explored the depression efficiency and various adsorption aspects of naturally derived depressants on the pyrite surface to create a possible universal trend for each biodegradable depressant derivative.展开更多
Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of gra...Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of grains can effectively inhibit the aggregation of active materials,improving lithium storage performance.In this work,natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion.Natural pyrite composite polyvinylpyrrolidone-modified graphite(pyrite/PG)material with uniform particle distribution is obtained by the ball milling process.The subsequent calcination process converts pyrite/PG into Fe_(1-x)Scompounded with polyvinylpyrrolidone-modified graphite(Fe_(1-x)S/PG).The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials.The as-prepared Fe_(1-x)S/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g^(-1)at 0.2 A·g^(-1)after 80 cycles and an excellent rate capability of 523.0 mAh·g^(-1)at 5 A·g^(-1).Even at a higher current density of 10 A·g^(-1),it can deliver a specific capacity of 348.0 mAh·g^(-1).Moreover,the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability.This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.展开更多
Enrichment of As and Au at the overgrowth rims of arsenian pyrite is a distinctive feature of Carlin-type gold ores.Revealing distribution of such key elements in high resolution is of fundamental importance yet often...Enrichment of As and Au at the overgrowth rims of arsenian pyrite is a distinctive feature of Carlin-type gold ores.Revealing distribution of such key elements in high resolution is of fundamental importance yet often proves challenging.In this study,repeated non-oxidative acid etching of ore samples from Shuiyindong gold deposit was applied to enable elemental depth profiling of goldbearing arsenian pyrite grains.ICP-OES and AAS were used to determine the dissolved Fe,As,and Au concentrations in each of the etching solutions,and XPS was carried out to exam the etched mineral surfaces.In contrast to conventional ion beam etching that may cause substantial sample damage,our acid etching method does not seem to significantly alter the composition and chemical state of the samples.The etched depths directly converted from the measured elemental concentrations can reproducibly reach a very high resolution of~1 nm,and can be conveniently controlled through varying the etching time.While the Fe and As depth profiles consistently reflect the surface oxidation property of arsenian pyrite,the Au profile displaying an obvious upward trend reveals the ore fluid evolution at the late stage of mineralization.Based on our experimental results,we demonstrate that our wet chemistry method is capable of effective depth profiling of gold ore and perhaps other geological samples,with advantages surpassing many instrumental techniques including negligible sample damage,nanoscale resolution as well as isotropic etching.展开更多
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was...In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.展开更多
Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment a...Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation.展开更多
The coal metamorphism in Central Hunan pro-vides valuable information about hydrothermal activity and water/rock reactions.Learning how to collect age data on hydrothermal fluid systems is necessary for understanding ...The coal metamorphism in Central Hunan pro-vides valuable information about hydrothermal activity and water/rock reactions.Learning how to collect age data on hydrothermal fluid systems is necessary for understanding the history and genetic mechanisms of large-scale coal-generated graphite deposits.The Shihangli graphite deposit,formed by significant siliceous hydrothermal alteration,is the most distinctive in Central Hunan.Re–Os dating of pyrite from the Shihangli graphite deposit demonstrates that the coal-generated graphite mineraliza-tion age is-127.6±3.8 Ma.Based on in-situ mineral analysis,the hydrothermal pyrite in the Shihangli graphite deposit is mostly enriched in Sb,As,Au,W,Ag,Cu,Pb,and Zn.Based on the pyrite Re–Os isochron,the initial(^(187)Os/^(188)Os)values of pyrite were 1.03±0.24 and the Os(t)values varied from 571.8 to 755.1.Pyrite from the Shihangli graphite deposit comprises a Pb isotope composition similar to that of the Madiyi Formation bulk rock and stibnite from the Xikuangshan Sb deposit.Based on the Re–Os,Sr,S,and Pb isotopic compositions of sul-fides in the graphite and Sb deposits in Central Hunan,the Madiyi Formation was likely the primary source of ore-forming elements(Sb,Au,and As).The Re–Os and Pb isotope compositions of pyrite most likely reflect when large-scale fluid migration and coal-generated graphite mineralization occurred in Central Hunan.展开更多
By studying both the microscopic physical and chemical typomorphic characteristics of typical mineral pyrite samples associated with representative gold deposits on the north-central margin of the North China Platform...By studying both the microscopic physical and chemical typomorphic characteristics of typical mineral pyrite samples associated with representative gold deposits on the north-central margin of the North China Platform,this paper seeks to identify macroscopic metallogenic mechanisms of gold deposits and to reveal the formation mechanism of lattice gold in pyrite.Typomorphic characteristics of pyrite reveal that pyrite grain size has a negative correlation with gold content.Cubic pyrite,as the dominant crystal form,contains more gold than pentagonal dodecahedral pyrite.Both pyrite crystal forms and chemical compositions indicate that the replacement style of gold deposit formed in a low saturability,low sulfur fugacity,and at temperatures either much higher or much lower than its best forming temperature;comparatively,that of the quartz vein style of gold deposit occurred under conditions with the best temperature,rich in sulfur,and with high sulfur fugacity.The Au/Ag ratios of the pyrites show that both the replacement and quartz vein styles of deposits are mesothermal and hypothermal,while the Co/Ni ratios of the pyrites indicate that the quartz vein style is of magmatic-hydrothermal origin.The X-ray diffraction intensity of pyrite rich in gold is lower than that of pyrite poor in gold at the quartz vein style.In general,with an increase in gold content in pyrite,the total sum intensityΣI decreases.The pyroelectricity coefficient has a negative correlation trend with the values of(Co+Ni+Se+Te)-As and(Co+Ni+Se+Te)/As.The pyrite pyroelectricity of the replacement style is N-type,indicating that it formed under low sulfur fugacity,while that of the quartz vein style is a mixture of P-N types,indicating that it formed under high sulfur fugacity.On the pyroelectricity-temperature diagram,pyrite of the replacement style is mainly distributed between 200 and 270°C,while that of the quartz vein style varies between 90–118 and274–386°C,demonstrating a multistage forming process.In contrast to previous researchers'conclusions,the authors confirm the existence of lattice gold in pyrites through the use of an electron paramagnetic resonance(EPR)test.Au in the form of Au~+,entering pyrite as an isomorph and producing electron–hole centers,makes the centers produce spin resonance absorption and results in EPR absorption peak II.The intensity of auriferous pyrite absorption peak II has certain direct positive correlations with pyrite gold content.The#I and#III absorption peaks of pyrites possibly result from the existence of Ni^(2+)and/or Cu^(2+).γ1,γ2,andγ3 are the strongest and most typical absorption peaks of the infrared spectra of the pyrites.Generally,with the increase in gold content in the pyrite samples,γ1,γ2,andγ3 tend to shift to higher wavenumbers,and the gold content in the pyrite samples has a positive correlation with their relative absorbance.展开更多
基金supported by of the National Key Research and Development Program of China (No. 2022YFC 2904601)
文摘With the continuous development of mineral resources to high altitude areas,the study of sulfide ore flotation in unconventional systems has been emphasized.There is a consensus that moderate oxidation of sulfide ore is beneficial to flotation,but the specific suitable dissolved oxygen value is inconclusive,and there are few studies on sulfide ore flotation under low dissolved oxygen environment at high altitude.In this paper,we designed and assembled an atmosphere simulation flotation equipment to simulate the flotation of pyrite at high altitude by controlling the partial pressure of N_(2)/O_(2) and dissolved oxygen under atmospheric conditions.X-ray photoelectron spec-troscopy(XPS),atomic force microscope(AFM),Fourier transform infrared spectrometer(FT-IR),UV-vis spectrophotometer,zeta po-tential,and contact angle measurements were used to reveal the effects of surface oxidation and agent adsorption on pyrite at high altitude(4600 m dissolved oxygen(DO)=4.0 mg/L).The results of pure mineral flotation indicated that the high altitude and low dissolved oxy-gen environment is favorable for pyrite flotation.Contact angle measurements and XPS analysis showed that the high altitude atmosphere nslows down the oxidation of pyrite surface,facilitates S_(n)^(2-)/S^(0) production and enhances surface hydrophobicity.Electrochemical calcula-tions and zeta potential analysis showed that the influence of atmosphere on the form of pyrite adsorption is small,and the different atmo-spheric conditions are consistent with dixanthogen electrochemical adsorption,with lower Zeta potential under high altitude atmosphere and significant potential shift after sodium isobutyl xanthate(SIBX)adsorption.The results of FT-IR,UV-vis,and AFM analysis showed that SIBX adsorbed more on the surface of pyrite under high altitude atmosphere and adsorbed on the surface in a mesh structure com-posed of column/block.The results of the experimental study revealed the reasons for the easy flotation of sulfide ores at high altitude with less collector dosage,and confirmed that the combined DO-pH regulation is beneficial to achieve more efficient flotation of pyrite.
基金financially supported by the National Key Research and Development Plan of China(No.2022YFC2904603)the National Natural Science Foundation of China(No.52174268)。
文摘This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
基金financially supported by the National Natural Science Foundation of China(No.52274348)the Major projects for the“Revealed Top”Science and Technology of Liaoning Province,China(No.2022JH1/10400024)the National Key Research and Development Program of China(No.2018YFC1902002).
文摘The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272103,92062221,42063009,U1812402)the Guizhou Provincial Science and Technology Projects(Grant No.Qiankehejichu–ZK[2022]common 213)the Higher Education Scientific Research Projects of the Education Department of Guizhou Province(Grant No.Qianjiaoji[2022]157).
文摘A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030003).
文摘Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.
基金supported by the Science and Technology Foundation of Guizhou Province,China(No.[2020]1Y163)the National Natural Science Foundation of China(No.41827802).
文摘Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations.
基金funded by SINOPEC(scientific research project P21087-6).
文摘Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examining numerous scanning electron microscope(SEM)images and considering the crystal and aggregate characteristics of minerals,we identified four types of pyrite in the study area:euhedral crystals,irregular aggregates,framboidal aggregates,and metasomatized organisms.Among these types,framboidal aggregates are the most prevalent.The formation mechanism of framboidal pyrite can be categorized into inorganic and organic origins.As inferred from the pyrite characteristics in the study area,the formation mechanism of the metasomatized organisms aligns with the biologically induced mineralization mode of organic origin,whereas the framboidal aggregates are more associated with the biologically controlled mineralization mode of organic origin.This underscores a close relationship between the pyrite formation and organic matter,which in turn indicates that an organic origin is more consistent with the pyrite characteristics observed in this study area.The pyrite morphology can reflect reactive iron concentration.Euhedral pyrite crystals tend to form under a low reactive iron concentration,whereas the formation of framboidal pyrite requires a high reactive iron concentration.Additionally,the type and grain size of pyrite aggregates can reflect variations in the redox conditions of the depositional environment.Pyrite produces positive effects on reservoir storage space,with intercrystalline organic pores,intercrystalline pores,and mold pores associated with pyrite contributing greatly to the storage spaces.
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
基金jointly supported by the foundation from Department of Science and Technology of Jiangxi Province(No.20232BAB213064)National Natural Science Foundation of China(No.42102088)foundation from the State Key Laboratory of Nuclear Resources and Environment(2022NRE33)。
文摘The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金the National Natural Science Foundation of China(No.51974215).
文摘The flotation separation of chalcopyrite from pyrite has attracted increasing attention due to the consumption of vast water resources and depressants.This study proposed the seawater oxidation pretreatment for non-depressant flotation separation of chalcopyrite from pyrite,as an effective and environmentally friendly strategy.Without the addition of depressants,seawater oxidation for 3 d effectively depressed pyrite flotation,with the highest recovery difference greater than 70%and a selectivity index greater than 6 between chalcopyrite and pyrite.The surface investigation showed that pyrite surface was more readily oxidized to form hydrophilic Fe oxidants/oxyhydroxides,as compared to that of chalcopyrite.Further UV-visible spectrophotometer and Fourier transform infrared spectrum(FTIR)results indicated that xanthate was less adsorbed onto the treated pyrite surface,resulting in un-floatable particles.Chalcopyrite surface was changed slightly due to seawater oxidation,thereby insignificantly affecting its flotation.The coordination theory was further used to reveal the combination mechanisms between xanthate and pyrite or chalcopyrite.This study therefore provides a promising strategy to effectively separate chalcopyrite from pyrite,especially in the freshwater-deficient area.
基金supported by Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)National Natural Science Foundation of China(No.51504109)。
文摘The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.
基金a project financially supported by CAMM3,the Center of Advanced Mining and Metallurgy,a center of excellence at the Lule?University of Technology。
文摘Froth flotation is an essential processing technique for upgrading low-grade ores.Flotation separation would not be efficient without chemical surfactants(collectors,depressants,frothers,etc.).Depressants play a critical role in the selective separation of minerals in that they deactivate unfavorable mineral surfaces and hinder them from floating into the flotation concentration zone.Pyrite is the most common and challenging sulfide gangue,and its conventional depressants could be highly harmful to nature and humans.Therefore,using available,affordable,eco-friendly polymers to assist or replace hazardous reagents is mandatory for a green transition.Polysaccharide-based(starch,dextrin,carboxymethyl cellulose,guar gum,etc.)polymers are one of the most used biodegradable depressant groups for pyrite depression.Despite the satisfactory flotation results obtained using these eco-friendly depressants,several gaps still need to be addressed,specifically in investigating surface interactions,adsorption mechanisms,and parameters affecting their depression performance.As a unique approach,this review comprehensively discussed previously conducted studies on pyrite depression with polysaccharide-based reagents.Additionally,practical suggestions have been provided for future assessments and developments of polysaccharide-based depressants,which pave the way to green flotation.This robust review also explored the depression efficiency and various adsorption aspects of naturally derived depressants on the pyrite surface to create a possible universal trend for each biodegradable depressant derivative.
基金financially supported by the National Natural Science Foundation of China (Nos.51974222 and 52034011)。
文摘Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of grains can effectively inhibit the aggregation of active materials,improving lithium storage performance.In this work,natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion.Natural pyrite composite polyvinylpyrrolidone-modified graphite(pyrite/PG)material with uniform particle distribution is obtained by the ball milling process.The subsequent calcination process converts pyrite/PG into Fe_(1-x)Scompounded with polyvinylpyrrolidone-modified graphite(Fe_(1-x)S/PG).The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials.The as-prepared Fe_(1-x)S/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g^(-1)at 0.2 A·g^(-1)after 80 cycles and an excellent rate capability of 523.0 mAh·g^(-1)at 5 A·g^(-1).Even at a higher current density of 10 A·g^(-1),it can deliver a specific capacity of 348.0 mAh·g^(-1).Moreover,the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability.This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.
基金Financial supports from the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(41872046,41902041 and 41173074)the Natural Science Research Project of Education Department of Guizhou Province(No.KY[2018]004)are sincerely acknowledged.
文摘Enrichment of As and Au at the overgrowth rims of arsenian pyrite is a distinctive feature of Carlin-type gold ores.Revealing distribution of such key elements in high resolution is of fundamental importance yet often proves challenging.In this study,repeated non-oxidative acid etching of ore samples from Shuiyindong gold deposit was applied to enable elemental depth profiling of goldbearing arsenian pyrite grains.ICP-OES and AAS were used to determine the dissolved Fe,As,and Au concentrations in each of the etching solutions,and XPS was carried out to exam the etched mineral surfaces.In contrast to conventional ion beam etching that may cause substantial sample damage,our acid etching method does not seem to significantly alter the composition and chemical state of the samples.The etched depths directly converted from the measured elemental concentrations can reproducibly reach a very high resolution of~1 nm,and can be conveniently controlled through varying the etching time.While the Fe and As depth profiles consistently reflect the surface oxidation property of arsenian pyrite,the Au profile displaying an obvious upward trend reveals the ore fluid evolution at the late stage of mineralization.Based on our experimental results,we demonstrate that our wet chemistry method is capable of effective depth profiling of gold ore and perhaps other geological samples,with advantages surpassing many instrumental techniques including negligible sample damage,nanoscale resolution as well as isotropic etching.
基金supported by the Science Foundation Ireland(SFI)through the SFI Research Professorship Programme entitled"Innovative Energy Technologies for Biofuels,Bioenergy and a Sustainable Irish Bioeconomy"(IETSBIO3Grant No.15/RP/2763)the Research Infrastructure Research Grant Platform for Biofuel Analysis(Grant No.16/RI/3401).
文摘In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.
基金financial supports from the Key Program for International S&T Cooperation Projects of China (No. 2021YFE0106800)the National Natural Science Foundation of China (No. U2067201)+3 种基金the Leading Talents of S & T Innovation of Hunan Province, China (No. 2021RC4002)the Science Fund for Distinguished Young Scholars of Hunan Province, China (No. 2020JJ2044)the Key Research and Development Program of Hunan Province, China (No. 2021SK2043)the National 111 Project, China (No. B14034)。
文摘Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation.
基金the National Key Research and Development Program of China(2016YFC0600207,2014CB440904)National Natural Science Foundation of China(Nos.42062006,41962007)the Integrated Exploration Project of China Geological Survey(No.12120114034501).
文摘The coal metamorphism in Central Hunan pro-vides valuable information about hydrothermal activity and water/rock reactions.Learning how to collect age data on hydrothermal fluid systems is necessary for understanding the history and genetic mechanisms of large-scale coal-generated graphite deposits.The Shihangli graphite deposit,formed by significant siliceous hydrothermal alteration,is the most distinctive in Central Hunan.Re–Os dating of pyrite from the Shihangli graphite deposit demonstrates that the coal-generated graphite mineraliza-tion age is-127.6±3.8 Ma.Based on in-situ mineral analysis,the hydrothermal pyrite in the Shihangli graphite deposit is mostly enriched in Sb,As,Au,W,Ag,Cu,Pb,and Zn.Based on the pyrite Re–Os isochron,the initial(^(187)Os/^(188)Os)values of pyrite were 1.03±0.24 and the Os(t)values varied from 571.8 to 755.1.Pyrite from the Shihangli graphite deposit comprises a Pb isotope composition similar to that of the Madiyi Formation bulk rock and stibnite from the Xikuangshan Sb deposit.Based on the Re–Os,Sr,S,and Pb isotopic compositions of sul-fides in the graphite and Sb deposits in Central Hunan,the Madiyi Formation was likely the primary source of ore-forming elements(Sb,Au,and As).The Re–Os and Pb isotope compositions of pyrite most likely reflect when large-scale fluid migration and coal-generated graphite mineralization occurred in Central Hunan.
基金Support for this study was received from the China National Ph.D.Foundations。
文摘By studying both the microscopic physical and chemical typomorphic characteristics of typical mineral pyrite samples associated with representative gold deposits on the north-central margin of the North China Platform,this paper seeks to identify macroscopic metallogenic mechanisms of gold deposits and to reveal the formation mechanism of lattice gold in pyrite.Typomorphic characteristics of pyrite reveal that pyrite grain size has a negative correlation with gold content.Cubic pyrite,as the dominant crystal form,contains more gold than pentagonal dodecahedral pyrite.Both pyrite crystal forms and chemical compositions indicate that the replacement style of gold deposit formed in a low saturability,low sulfur fugacity,and at temperatures either much higher or much lower than its best forming temperature;comparatively,that of the quartz vein style of gold deposit occurred under conditions with the best temperature,rich in sulfur,and with high sulfur fugacity.The Au/Ag ratios of the pyrites show that both the replacement and quartz vein styles of deposits are mesothermal and hypothermal,while the Co/Ni ratios of the pyrites indicate that the quartz vein style is of magmatic-hydrothermal origin.The X-ray diffraction intensity of pyrite rich in gold is lower than that of pyrite poor in gold at the quartz vein style.In general,with an increase in gold content in pyrite,the total sum intensityΣI decreases.The pyroelectricity coefficient has a negative correlation trend with the values of(Co+Ni+Se+Te)-As and(Co+Ni+Se+Te)/As.The pyrite pyroelectricity of the replacement style is N-type,indicating that it formed under low sulfur fugacity,while that of the quartz vein style is a mixture of P-N types,indicating that it formed under high sulfur fugacity.On the pyroelectricity-temperature diagram,pyrite of the replacement style is mainly distributed between 200 and 270°C,while that of the quartz vein style varies between 90–118 and274–386°C,demonstrating a multistage forming process.In contrast to previous researchers'conclusions,the authors confirm the existence of lattice gold in pyrites through the use of an electron paramagnetic resonance(EPR)test.Au in the form of Au~+,entering pyrite as an isomorph and producing electron–hole centers,makes the centers produce spin resonance absorption and results in EPR absorption peak II.The intensity of auriferous pyrite absorption peak II has certain direct positive correlations with pyrite gold content.The#I and#III absorption peaks of pyrites possibly result from the existence of Ni^(2+)and/or Cu^(2+).γ1,γ2,andγ3 are the strongest and most typical absorption peaks of the infrared spectra of the pyrites.Generally,with the increase in gold content in the pyrite samples,γ1,γ2,andγ3 tend to shift to higher wavenumbers,and the gold content in the pyrite samples has a positive correlation with their relative absorbance.