A direct Kerr-lens mode-locked Tm:LuYO_(3)ceramic laser without the aid of any mode-locked starting element is reported for the first time. A pulse duration as short as 259 fs and a maximum average output power of 326...A direct Kerr-lens mode-locked Tm:LuYO_(3)ceramic laser without the aid of any mode-locked starting element is reported for the first time. A pulse duration as short as 259 fs and a maximum average output power of 326 m W are obtained at a repetition rate of 97.1 MHz. The corresponding optical spectrum centered at 2053 nm exhibits a bandwidth of 19.8 nm,which indicates the presence of nearly Fourier transform-limited pulses. Such a Kerr-lens mode-locked Tm:LuYO_(3)ceramic laser is a promising ultrashort pulse source, with both the excellent laser characteristics of Tm:LuYO3and the high-power 790 nm laser diode pumping scheme.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62165012 and 61665010)Key research and development projects in Gansu Province (Grant No. 21YFIGE300)+5 种基金Gansu Province College Industry Support Plan Project (Grant Nos. 2020C-23 and 2022CYZC-59)Department of Education of Gansu Province: The Education Project of Open Competition for the Best Candidates (Grant No. 2021jyjbgs-06)Gansu Provincial University Innovation Fund Project (Grant No. 2021B-190)Qinzhou District Science and Technology Plan Project (Grant No. 2021-SHFZG1442)Gansu Province College Young Doctor Support Project (Grant No. 2023QB-013)Gansu Province Excellent Graduate Innovation Star Project (Grant No. 2022CXZX796)。
文摘A direct Kerr-lens mode-locked Tm:LuYO_(3)ceramic laser without the aid of any mode-locked starting element is reported for the first time. A pulse duration as short as 259 fs and a maximum average output power of 326 m W are obtained at a repetition rate of 97.1 MHz. The corresponding optical spectrum centered at 2053 nm exhibits a bandwidth of 19.8 nm,which indicates the presence of nearly Fourier transform-limited pulses. Such a Kerr-lens mode-locked Tm:LuYO_(3)ceramic laser is a promising ultrashort pulse source, with both the excellent laser characteristics of Tm:LuYO3and the high-power 790 nm laser diode pumping scheme.