Tolerance analysis is investigated under an environment of concurrent design in order to lead to optimized tolerance, as traditional tolerance analysis is often inefficient and liable to mistakes. Making full use of k...Tolerance analysis is investigated under an environment of concurrent design in order to lead to optimized tolerance, as traditional tolerance analysis is often inefficient and liable to mistakes. Making full use of knowledge in manufacturing tolerance analysis combined with the beta distribution model is introduced and applied. The use of beta distribution reflects fully actual capabilities in manufacture. Concurrent tolerance design is a manufacturing environment oriented design process paying more attention to influences or restraints on product design caused by such factors as the manufacturing process, machine capabilities, economy in manufacturing, etc. Process environment oriented tolerance analysis is more flexible making the designed results more practical and effective.展开更多
Electromagnetic relay in aerospace is one of the main electronic components in aerospace electronic systems for information transfer, control and power distribution, and its reliability will influence the reliability ...Electromagnetic relay in aerospace is one of the main electronic components in aerospace electronic systems for information transfer, control and power distribution, and its reliability will influence the reliability of the whole aerospace electronic systems. Reliability design is the key technique of electromagnetic relay reliability engineering. This paper synthetically analyzes the present reliability design methods, and presents the reliability tolerance analyzing mathematic models of electromagnetic force basing on orthogonal design, mechanical spring force basing on probability statistics theory, and matching characteristics of electromagnetic force and mechanical spring force basing on method of stressstrength interference. Some instructive conclusions are draw by researching on the reliability tolerance of some type electromagnetic relay in aerospace.展开更多
Tolerance analysis of a planetary reducer is conducted. By focusing the serially-arranged parts in the central line and setting an appropriate dimension as a “gap”, worst-case tolerance analysis method and statistic...Tolerance analysis of a planetary reducer is conducted. By focusing the serially-arranged parts in the central line and setting an appropriate dimension as a “gap”, worst-case tolerance analysis method and statistical (RSS) tolerance analysis are used, and then a tolerance-analyzing tool CE/TOL is introduced. The acceptable value range of the “gap” is from 1.5 mm to 3.5 mm. While worst-case analysis rejects the design, RSS accepts it by a more realistic result with the law of probability accounted. With the help of CE/TOL and CAD software Pro/E, all components' dimensions and tolerances are assigned and modified, and more detailed and more comprehensible results are gives out.展开更多
Monte Carlo Analysis has been an accepted method for circuit tolerance analysis, but the heavy computational complexity has always prevented its applications. Based on random set theory, this paper presents a simple a...Monte Carlo Analysis has been an accepted method for circuit tolerance analysis, but the heavy computational complexity has always prevented its applications. Based on random set theory, this paper presents a simple and flexible tolerance analysis method to estimate circuit yield. It is the alternative to Monte Carlo analysis, but reduces the number of calculations dramatically.展开更多
Tolerance design, including tolerance analysis and distribution, is an important part of the electronic system’s reli- ability design. The traditional design needs to construct mathematic model of material circuit, w...Tolerance design, including tolerance analysis and distribution, is an important part of the electronic system’s reli- ability design. The traditional design needs to construct mathematic model of material circuit, which involves large amount of workload and lacks of practicability. This paper discusses the basic theory of electronic system’s reliability tolerance design and presents a new design method based on EDA (Electronic Design Automatic) software. This method has been validated through the application research on reliability tolerance design of the DC hybrid contactor’s control circuit.展开更多
This article is about a comparison of different measures for determining the robustness or reliability of electric machine designs in the presence of inevitable tolerances.The selected criteria shall be suitable for c...This article is about a comparison of different measures for determining the robustness or reliability of electric machine designs in the presence of inevitable tolerances.The selected criteria shall be suitable for concurrent evaluation in the course of solving state-of-the-art large scale multi-objective opti-mization problems.In the past,besides particularly customized criteria,mainly gradient based measures,worst case information,or standard deviation based quantities were considered.In this work,the quantile measure is introduced for electric machine design optimization and compared with the existing solutions.The evaluation of a design’s robustness is typically examined based on finite element simulations.As for most measures a signif-icant number of parameter combinations and thus computations are required,a surrogate model assisted approach is presented to minimize computational effort and runtime.A test problem is defined and analyzed to illustrate the differences of selected robustness measures.Results reveal the importance of considering robustness in the optimization process.Moreover,a careful choice of appropriate measures has to be taken.Selected designs are compared and conclusions and an outlook on future activities are presented.展开更多
As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focus...As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.展开更多
Ten F1 combinations with their male and female parents were employed to evaluate their heat tolerance during the flowering and early grain filling stages. The rice plants were subjected to heat stress(39 °C–43 ...Ten F1 combinations with their male and female parents were employed to evaluate their heat tolerance during the flowering and early grain filling stages. The rice plants were subjected to heat stress(39 °C–43 °C) for 1–15 d during flowering. Based on the heat stress index, heat tolerance was only observed in the F1 combinations H2(K22A × R207), H3(Bobai A × R207) and H4(Bobai A × Minghui 63), whereas the others received above 0.5000 of heat stress index. Both parents of the tolerant combination(heat-tolerant × heat-tolerant) possessed heat tolerance, whereas the susceptible combinations were crossed by heat-tolerant(sterile lines) × heat-susceptible(restorer lines), heat-susceptible × heat-tolerant, or heat-susceptible × heat-susceptible parents. This result indicated that heat tolerance in rice was controlled by recessive genes. Thus, both parents should possess high temperature tolerance to develop heat-tolerant F1 combinations. Furthermore, the heat stress index of F1 combinations was significantly correlated with the heat stress index of restorer lines but not with the heat stress index of maintainer lines. This result suggested that male parents play a more important role in heat-tolerant combinations than female parents. Therefore, the heat susceptibility of the hybrid rice in China is mainly due to the wide application of low-heat-tolerant restorer lines with high yield in three-line hybrid rice breeding.展开更多
Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatig...Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatigue failure,wear,and thermal conditions of bearings.To fill the gap,in the current work,all three objectives of a tapered roller bearing have been innovatively considered respectively,which are the dynamic capacity,elasto-hydrodynamic lubrication(EHL)minimum film⁃thickness,and maximum bearing temperature.These objective function formulations are presented,associated design variables are identified,and constraints are discussed.To solve complex non⁃linear constrained optimization formulations,a best⁃practice design procedure was investigated using the Artificial Bee Colony(ABC)algorithms.A sensitivity analysis of several geometric design variables was conducted to observe the difference in all three objectives.An excellent enhancement was found in the bearing designs that have been optimized as compared with bearing standards and previously published works.The present study will definitely add to the present experience based design followed in bearing industries to save time and obtain assessment of bearing performance before manufacturing.To verify the improvement,an experimental investigation is worthwhile conducting.展开更多
This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,b...This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,but also allow to analyze their performance in the presence of unevitable tolerances.Consequently,by additionally considering reliability or robustness as objectives compared to conventional optimization scenarios,designs featuring low parameter sensitiveness can be obtained.The analysis of the design’s reliability as part of solving optimization problems involves a significant increase in required numerical evaluations.To minimize the associated prolongation of the runtime,an approach featuring a design of experiments based reduction of required computations and a consequent surrogate modeling technique is presented here.After successful training,the metamodel can be applied for fast evaluating lots of different parameter combinations.A test problem is defined and analyzed.Based on the observed findings,the necessity of incorporating robustness evaluations to machine design optimization becomes evident.In addition,the derived models allow for studying the impact of any tolerance-affected parameter on the machine performance in detail.This facilitates further beneficial studies,as for instance the analysis of selected changes of tolerance levels rather than a general minimization of the respective ranges which usually is associated with high production cost.展开更多
This work is about analyzing surface mounted permanent magnet machines regarding their sensitiveness related to erroneous magnet positioning.A finite element analysis based approach is presented and different topologi...This work is about analyzing surface mounted permanent magnet machines regarding their sensitiveness related to erroneous magnet positioning.A finite element analysis based approach is presented and different topologies in terms of slot and pole count are compared.The study further includes the analysis of multiple magnet widths and stator teeth widths.By contrast to most of previous studies,the work is based on evaluating the cumulative distribution function of the cogging torque in case of non-idealities.A Monte Carlo importance sampling based strategy is focused.This approach facilitates studying arbitrary tolerance distributions.Results reveal that topologies with particularly promising rated cogging torque behaviour exhibit the most significant performance degradation in presence of tolerances.A linear relationship is identified for cogging torque performance as function of the accuracy in magnet positioning.Results emphasize the necessity of tolerance analyses for electric machine design to not overrate their performance in the presence of manufacturing uncertainties.展开更多
Quantitative analysis has always been a difficult problem in security analysis of intrusion tolerance systems. An intrusion tolerance model based on multiple recovery mechanisms is introduced in this paper and how to ...Quantitative analysis has always been a difficult problem in security analysis of intrusion tolerance systems. An intrusion tolerance model based on multiple recovery mechanisms is introduced in this paper and how to quantify the security attributes of the model is proposed. A state transition model with recovery states more accurately describes the dynamic behavior of the system. Considering that recovery mechanisms have a great impact on the security performance of the system, we set up the cost models corresponding to different recovery mechanisms. We propose a feasible security measure based on mean cost to security failure in order to evaluate the system cost during the recovery phase. The experimental results confirmed the feasibility of the proposed methods.展开更多
In this paper, a foveated imaging system using a reflective liquid crystal spatial light modulator (SLM) was designed. To demonstrate the concept of foveated imaging, we simulated with software Code V and establishe...In this paper, a foveated imaging system using a reflective liquid crystal spatial light modulator (SLM) was designed. To demonstrate the concept of foveated imaging, we simulated with software Code V and established a laboratory prototype. The result of the experiment shows that an SLM can be used to correct the aberration of region of interest (ROI) while the resolution of other area was still very low. The vary- resolution system was relative simple compared to the traditional high resolution system and obviously can reduce the amount of data transmission. Such systems will have wide application prospect in various fields.展开更多
文摘Tolerance analysis is investigated under an environment of concurrent design in order to lead to optimized tolerance, as traditional tolerance analysis is often inefficient and liable to mistakes. Making full use of knowledge in manufacturing tolerance analysis combined with the beta distribution model is introduced and applied. The use of beta distribution reflects fully actual capabilities in manufacture. Concurrent tolerance design is a manufacturing environment oriented design process paying more attention to influences or restraints on product design caused by such factors as the manufacturing process, machine capabilities, economy in manufacturing, etc. Process environment oriented tolerance analysis is more flexible making the designed results more practical and effective.
文摘Electromagnetic relay in aerospace is one of the main electronic components in aerospace electronic systems for information transfer, control and power distribution, and its reliability will influence the reliability of the whole aerospace electronic systems. Reliability design is the key technique of electromagnetic relay reliability engineering. This paper synthetically analyzes the present reliability design methods, and presents the reliability tolerance analyzing mathematic models of electromagnetic force basing on orthogonal design, mechanical spring force basing on probability statistics theory, and matching characteristics of electromagnetic force and mechanical spring force basing on method of stressstrength interference. Some instructive conclusions are draw by researching on the reliability tolerance of some type electromagnetic relay in aerospace.
文摘Tolerance analysis of a planetary reducer is conducted. By focusing the serially-arranged parts in the central line and setting an appropriate dimension as a “gap”, worst-case tolerance analysis method and statistical (RSS) tolerance analysis are used, and then a tolerance-analyzing tool CE/TOL is introduced. The acceptable value range of the “gap” is from 1.5 mm to 3.5 mm. While worst-case analysis rejects the design, RSS accepts it by a more realistic result with the law of probability accounted. With the help of CE/TOL and CAD software Pro/E, all components' dimensions and tolerances are assigned and modified, and more detailed and more comprehensible results are gives out.
基金the National Natural Science Foundation of China (No.60772006, 60434020)the Zhejiang Natural Science Foundation (No.R106745, Y1080422).
文摘Monte Carlo Analysis has been an accepted method for circuit tolerance analysis, but the heavy computational complexity has always prevented its applications. Based on random set theory, this paper presents a simple and flexible tolerance analysis method to estimate circuit yield. It is the alternative to Monte Carlo analysis, but reduces the number of calculations dramatically.
文摘Tolerance design, including tolerance analysis and distribution, is an important part of the electronic system’s reli- ability design. The traditional design needs to construct mathematic model of material circuit, which involves large amount of workload and lacks of practicability. This paper discusses the basic theory of electronic system’s reliability tolerance design and presents a new design method based on EDA (Electronic Design Automatic) software. This method has been validated through the application research on reliability tolerance design of the DC hybrid contactor’s control circuit.
文摘This article is about a comparison of different measures for determining the robustness or reliability of electric machine designs in the presence of inevitable tolerances.The selected criteria shall be suitable for concurrent evaluation in the course of solving state-of-the-art large scale multi-objective opti-mization problems.In the past,besides particularly customized criteria,mainly gradient based measures,worst case information,or standard deviation based quantities were considered.In this work,the quantile measure is introduced for electric machine design optimization and compared with the existing solutions.The evaluation of a design’s robustness is typically examined based on finite element simulations.As for most measures a signif-icant number of parameter combinations and thus computations are required,a surrogate model assisted approach is presented to minimize computational effort and runtime.A test problem is defined and analyzed to illustrate the differences of selected robustness measures.Results reveal the importance of considering robustness in the optimization process.Moreover,a careful choice of appropriate measures has to be taken.Selected designs are compared and conclusions and an outlook on future activities are presented.
基金Supported by National Natural Science Foundation of China(Grant No.51575385)
文摘As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31201150 and 31101116)the Research Grant of China National Rice Research Institute (Grant No. 2012RG004-3)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest (Grant No. 201203029)the National System of Rice Industry (Grant No. CARS-01-27)
文摘Ten F1 combinations with their male and female parents were employed to evaluate their heat tolerance during the flowering and early grain filling stages. The rice plants were subjected to heat stress(39 °C–43 °C) for 1–15 d during flowering. Based on the heat stress index, heat tolerance was only observed in the F1 combinations H2(K22A × R207), H3(Bobai A × R207) and H4(Bobai A × Minghui 63), whereas the others received above 0.5000 of heat stress index. Both parents of the tolerant combination(heat-tolerant × heat-tolerant) possessed heat tolerance, whereas the susceptible combinations were crossed by heat-tolerant(sterile lines) × heat-susceptible(restorer lines), heat-susceptible × heat-tolerant, or heat-susceptible × heat-susceptible parents. This result indicated that heat tolerance in rice was controlled by recessive genes. Thus, both parents should possess high temperature tolerance to develop heat-tolerant F1 combinations. Furthermore, the heat stress index of F1 combinations was significantly correlated with the heat stress index of restorer lines but not with the heat stress index of maintainer lines. This result suggested that male parents play a more important role in heat-tolerant combinations than female parents. Therefore, the heat susceptibility of the hybrid rice in China is mainly due to the wide application of low-heat-tolerant restorer lines with high yield in three-line hybrid rice breeding.
文摘Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatigue failure,wear,and thermal conditions of bearings.To fill the gap,in the current work,all three objectives of a tapered roller bearing have been innovatively considered respectively,which are the dynamic capacity,elasto-hydrodynamic lubrication(EHL)minimum film⁃thickness,and maximum bearing temperature.These objective function formulations are presented,associated design variables are identified,and constraints are discussed.To solve complex non⁃linear constrained optimization formulations,a best⁃practice design procedure was investigated using the Artificial Bee Colony(ABC)algorithms.A sensitivity analysis of several geometric design variables was conducted to observe the difference in all three objectives.An excellent enhancement was found in the bearing designs that have been optimized as compared with bearing standards and previously published works.The present study will definitely add to the present experience based design followed in bearing industries to save time and obtain assessment of bearing performance before manufacturing.To verify the improvement,an experimental investigation is worthwhile conducting.
基金This work has been supported by the COMET-K2“Center for Symbiotic Mechatronics”of the Linz Center of Mechatronics(LCM)funded by the Austrian federal government and the federal state of Upper Austria.
文摘This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,but also allow to analyze their performance in the presence of unevitable tolerances.Consequently,by additionally considering reliability or robustness as objectives compared to conventional optimization scenarios,designs featuring low parameter sensitiveness can be obtained.The analysis of the design’s reliability as part of solving optimization problems involves a significant increase in required numerical evaluations.To minimize the associated prolongation of the runtime,an approach featuring a design of experiments based reduction of required computations and a consequent surrogate modeling technique is presented here.After successful training,the metamodel can be applied for fast evaluating lots of different parameter combinations.A test problem is defined and analyzed.Based on the observed findings,the necessity of incorporating robustness evaluations to machine design optimization becomes evident.In addition,the derived models allow for studying the impact of any tolerance-affected parameter on the machine performance in detail.This facilitates further beneficial studies,as for instance the analysis of selected changes of tolerance levels rather than a general minimization of the respective ranges which usually is associated with high production cost.
基金supported by the COMET-K2“Center for Symbiotic Mechatronics”of the Linz Center of Mechatronics(LCM)funded by the Austrian federal government and the federal state of Upper Austria.
文摘This work is about analyzing surface mounted permanent magnet machines regarding their sensitiveness related to erroneous magnet positioning.A finite element analysis based approach is presented and different topologies in terms of slot and pole count are compared.The study further includes the analysis of multiple magnet widths and stator teeth widths.By contrast to most of previous studies,the work is based on evaluating the cumulative distribution function of the cogging torque in case of non-idealities.A Monte Carlo importance sampling based strategy is focused.This approach facilitates studying arbitrary tolerance distributions.Results reveal that topologies with particularly promising rated cogging torque behaviour exhibit the most significant performance degradation in presence of tolerances.A linear relationship is identified for cogging torque performance as function of the accuracy in magnet positioning.Results emphasize the necessity of tolerance analyses for electric machine design to not overrate their performance in the presence of manufacturing uncertainties.
基金Supported in part by the National Natural Science Foundation of China(61472139)the Key Project of Shanghai Science and Technology Commission(11511504403)
文摘Quantitative analysis has always been a difficult problem in security analysis of intrusion tolerance systems. An intrusion tolerance model based on multiple recovery mechanisms is introduced in this paper and how to quantify the security attributes of the model is proposed. A state transition model with recovery states more accurately describes the dynamic behavior of the system. Considering that recovery mechanisms have a great impact on the security performance of the system, we set up the cost models corresponding to different recovery mechanisms. We propose a feasible security measure based on mean cost to security failure in order to evaluate the system cost during the recovery phase. The experimental results confirmed the feasibility of the proposed methods.
文摘In this paper, a foveated imaging system using a reflective liquid crystal spatial light modulator (SLM) was designed. To demonstrate the concept of foveated imaging, we simulated with software Code V and established a laboratory prototype. The result of the experiment shows that an SLM can be used to correct the aberration of region of interest (ROI) while the resolution of other area was still very low. The vary- resolution system was relative simple compared to the traditional high resolution system and obviously can reduce the amount of data transmission. Such systems will have wide application prospect in various fields.