BACKGROUND Diabetic kidney disease(DKD)is a major complication of diabetes mellitus.Renal tubular epithelial cell(TEC)damage,which is strongly associated with the inflammatory response and mesenchymal trans-differenti...BACKGROUND Diabetic kidney disease(DKD)is a major complication of diabetes mellitus.Renal tubular epithelial cell(TEC)damage,which is strongly associated with the inflammatory response and mesenchymal trans-differentiation,plays a significant role in DKD;However,the precise molecular mechanism is unknown.The recently identified microRNA-630(miR-630)has been hypothesized to be closely associated with cell migration,apoptosis,and autophagy.However,the association between miR-630 and DKD and the underlying mechanism remain unknown.AIM To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats.METHODS Streptozotocin was administered to six-week-old male rats to create a hypergly cemic diabetic model.In the second week of modeling,the rats were divided into control,DKD,negative control of lentivirus,and miR-630 overexpression groups.After 8 wk,urine and blood samples were collected for the kidney injury assays,and renal tissues were removed for further molecular assays.The target gene for miR-630 was predicted using bioinformatics,and the association between miR-630 and toll-like receptor 4(TLR4)was confirmed using in vitro investigations and double luciferase reporter gene assays.Overexpression of miR-630 in DKD rats led to changes in body weight,renal weight index,basic blood parameters and histopathological changes.RESULTS The expression level of miR-630 was reduced in the kidney tissue of rats with DKD(P<0.05).The miR-630 and TLR4 expressions in rat renal TECs(NRK-52E)were measured using quantitative reverse transcription polymerase chain reaction.The mRNA expression level of miR-630 was significantly lower in the high-glucose(HG)and HG+mimic negative control(NC)groups than in the normal glucose(NG)group(P<0.05).In contrast,the mRNA expression level of TLR4 was significantly higher in these groups(P<0.05).However,miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG+miR-630 mimic group than in the HG+mimic NC group(P<0.05).Furthermore,the levels of tumor necrosis factor-alpha(TNF-α),interleukin-1β(IL-1β),and IL-6 were significantly higher in the HG and HG+mimic NC groups than in NG group(P<0.05).However,the levels of these cytokines were significantly lower in the HG+miR-630 mimic group than in the HG+mimic NC group(P<0.05).Notably,changes in protein expression were observed.The HG and HG+mimic NC groups showed a significant decrease in E-cadherin protein expression,whereas TLR4,α-smooth muscle actin(SMA),and collagen IV protein expression increased(P<0.05).Conversely,the HG+miR-630 mimic group exhibited a significant increase in E-cadherin protein expression and a notable decrease in TLR4,α-SMA,and collagen IV protein expression than in the HG+mimic NC group(P<0.05).The miR-630 targets TLR4 gene expression.In vivo experiments demonstrated that DKD rats treated with miR-630 agomir exhibited significantly higher miR-630 mRNA expression than DKD rats injected with agomir NC.Additionally,rats treated with miR-630 agomir showed significant reductions in urinary albumin,blood glucose,TLR4,and proinflammatory markers(TNF-α,IL-1β,and IL-6)expression levels(P<0.05).Moreover,these rats exhibited fewer kidney lesions and reduced infiltration of inflammatory cells.CONCLUSION MiR-630 may inhibit the inflammatory reaction of DKD by targeting TLR4,and has a protective effect on DKD.展开更多
Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insu...Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels.However,this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells.Recent research has explored the potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)as a novel intervention to modify the disease course and delay the onset of T1D.GLP-1RAs are medications initially developed for treating type 2 diabetes.They exert their effects by enhancing glucose-dependent insulin secretion,suppressing glucagon secretion,and slowing gastric emptying.Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D.This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D,possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells.This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification,which should open new avenues for preventing and treating T1D,improving the quality of life and long-term outcomes for individuals at risk of T1D.展开更多
In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the inte...In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.展开更多
Objective Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists(GLP-1RAs)on asthma,which is often comorbid with type 2 diabetes mellitus(T2DM)and obesity.Theref...Objective Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists(GLP-1RAs)on asthma,which is often comorbid with type 2 diabetes mellitus(T2DM)and obesity.Therefore,we conducted a meta-analysis to assess the association between the administration of glucagon-like peptide-1(GLP-1)receptor-based agonists and the incidence of asthma in patients with T2DM and/or obesity.Methods PubMed,Web of Science,Embase,the Cochrane Central Register of Controlled Trials,and Clinicaltrial.gov were systematically searched from inception to July 2023.Randomized controlled trials(RCTs)of GLP-1 receptor-based agonists(GLP-1RA,GLP-1 based dual and triple receptor agonist)with reports of asthma events were included.Outcomes were computed as risk ratios(RR)using a fixedeffects model.Results Overall,39 RCTs with a total of 85,755 participants were included.Compared to non-GLP-1 receptor-based agonist users,a trend of reduced risk of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments,although the difference was not statistically significant[RR=0.91,95%confidence interval(CI):0.68 to 1.24].Further Subgroup analyses indicated that the use of light-molecular-weight GLP-1RAs might be associated with a reduced the risk of asthma when compared with non-users(RR=0.65,95%CI:0.43 to 0.99,P=0.043).We also performed sensitivity analyses for participant characteristics,study design,drug structure,duration of action,and drug subtypes.However,no significant associations were observed.Conclusion Compared with non-users,a modest reduction in the incidence of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments.Further investigations are warranted to assess the association between GLP-1 receptor-based agonists and the risk of asthma.展开更多
Atrial fibrillation(AF)is the most common cardiac arrhythmia.Many medical conditions,including hypertension,diabetes,obesity,sleep apnea,and heart failure(HF),increase the risk for AF.Cardiomyocytes have unique metabo...Atrial fibrillation(AF)is the most common cardiac arrhythmia.Many medical conditions,including hypertension,diabetes,obesity,sleep apnea,and heart failure(HF),increase the risk for AF.Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production.Significant changes occur in myocardial metabolism in AF.Glucagon-like peptide-1 receptor agonists(GLP-1RAs)have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus(T2DM)and obesity.GLP-1RAs have also been shown to reduce oxidative stress,inflammation,autonomic nervous system modulation,and mitochondrial function.This article reviews the changes in metabolic characteristics in cardiomyocytes in AF.Although the clinical trial outcomes are unsatisfactory,the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors,lowering the incidence of AF.展开更多
Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2...Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2DM.Various considerations can make selecting and switching between different GLP-1 RAs challenging.Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.展开更多
BACKGROUND N6-methyladenosine(m6A)modification represents the predominant alteration found in eukaryotic messenger RNA and plays a crucial role in the progression of various tumors.However,despite its significance,the...BACKGROUND N6-methyladenosine(m6A)modification represents the predominant alteration found in eukaryotic messenger RNA and plays a crucial role in the progression of various tumors.However,despite its significance,the comprehensive investigation of METTL5,a key m6A methyltransferase,in colorectal cancer(CRC)remains limited.AIM To investigate the role of METTL5 in CRC.METHODS We assessed METTL5 expression levels in clinical samples obtained from CRC patients as well as in CRC cell lines.To elucidate the downstream targets of METTL5,we performed RNA-sequencing analysis coupled with correlation analysis,leading us to identify Toll-like receptor 8(TLR8)as a potential downstream target.In vitro functional assessments of METTL5 and TLR8 were conducted using CCK-8 assays,scratch assays,as well as assays measuring cell migration and invasion.RESULTS Our findings reveal a pronounced upregulation of METTL5 expression in both CRC cells and tissues,which correlated significantly with an unfavorable prognosis.In vitro experiments unequivocally demonstrated the oncogenic role of METTL5,as evidenced by its promotion of CRC cell proliferation,invasion,and migration.Notably,we identified TLR8 as a downstream target of METTL5,and subsequent down-regulation of TLR8 led to a significant inhibition of CRC cell proliferation,invasion,and tumor growth.CONCLUSION The heightened expression of METTL5 in CRC is strongly associated with clinicopathological features and a poor prognosis,thereby underscoring its potential utility as a critical marker for facilitating early diagnosis and prognostication in CRC.展开更多
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling...Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.展开更多
Glucagon-like peptide receptor agonists(GLP-1RA)are used to treat type 2 diabetes mellitus and,more recently,have garnered attention for their effect-iveness in promoting weight loss.They have been associated with sev...Glucagon-like peptide receptor agonists(GLP-1RA)are used to treat type 2 diabetes mellitus and,more recently,have garnered attention for their effect-iveness in promoting weight loss.They have been associated with several gastrointestinal adverse effects,including nausea and vomiting.These side effects are presumed to be due to increased residual gastric contents.Given the potential risk of aspiration and based on limited data,the American Society of Anesthesi-ologists updated the guidelines concerning the preoperative management of patients on GLP-1RA in 2023.They included the duration of mandated cessation of GLP-1RA before sedation and usage of“full stomach”precautions if these medications were not appropriately held before the procedure.This has led to additional challenges,such as extended waiting time,higher costs,and increased risk for patients.In this editorial,we review the current societal guidelines,clinical practice,and future directions regarding the usage of GLP-1RA in patients undergoing an endoscopic procedure.展开更多
BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGL...BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGLT-2I alone may not improve some cardiovascular outcomes in patients with prior cardiovascular co-morbidities.AIM To explore whether combining GLP-1RA and SGLT-2I can achieve additional benefit in preventing cardiovascular diseases in T2D.METHODS The systematic review was conducted according to PRISMA recommendations.The protocol was registered on PROSPERO(ID:42022385007).A total of 107049 participants from eligible cardiovascular outcomes trials of GLP-1RA and SGLT-2I were included in network meta-regressions to estimate cardiovascular benefit of the combination treatment.Effect modification of prior myocardial infarction(MI)and heart failure(HF)was also explored to provide clinical insight as to when the INTRODUCTION The macro-and micro-vascular benefits of glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are independent of their glucose-lowering effects[1].In patients with type 2 diabetes(T2D),the major cardiovascular outcome trials(CVOT)showed that dipeptidyl peptidase-4 inhibitors(DPP-4I)did not improve cardiovascular outcomes[2],whereas cardiovascular benefit of GLP-1RA or SGLT-2I was significant[3,4].Further subgroup analyses indicated that the background cardiovascular risk should be considered when examining the cardiovascular outcomes of these newer glucose-lowering medications.For instance,prevention of major adverse cardiovascular events(MACE)was only seen in those patients with baseline atherosclerotic cardiovascular disease[3,4].Moreover,a series of CVOT conducted in patients with heart failure(HF)have demonstrated that(compared with placebo)SGLT-2I significantly reduced risk of hospitalization for HF or cardiovascular death,irrespective of their history of T2D[5-8].However,similar cardiovascular benefits were not observed in those with myocardial infarction(MI)[9,10].Cardiovascular co-morbidities are not only approximately twice as common but are also associated with dispropor-tionately worse cardiovascular outcomes in patients with T2D,compared to the general population[11].Therefore,it is of clinical importance to investigate whether the combination treatment of GLP-1RA and SGLT-2I could achieve greater cardiovascular benefit,particularly when considering patients with cardiovascular co-morbidities who may not gain sufficient cardiovascular protection from the monotherapies.This systematic review with multiple network meta-regressions was mainly aimed to explore whether combining GLP-1RA and SGLT-2I can provide additional cardiovascular benefit in T2D.Cardiovascular outcomes of these newer antidiabetic medications were also estimated under effect modification of prior cardiovascular diseases.This was to provide clinical insight as to when the combination treatment might be prioritized.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)has become the most common chronic liver disease worldwide,paralleling the rising pandemic of obesity and type 2 diabetes.Due to the growing global health...Metabolic dysfunction-associated steatotic liver disease(MASLD)has become the most common chronic liver disease worldwide,paralleling the rising pandemic of obesity and type 2 diabetes.Due to the growing global health burden and com-plex pathogenesis of MASLD,a multifaceted and innovative therapeutic approach is needed.Incretin receptor agonists,which were initially developed for diabetes management,have emerged as promising candidates for MASLD treatment.This review describes the pathophysiological mechanisms and action sites of three major classes of incretin/glucagon receptor agonists:glucagon-like peptide-1 receptor agonists,glucose-dependent insulinotropic polypeptide receptor agonists,and glucagon receptor agonists.Incretins and glucagon directly or indirectly impact various organs,including the liver,brain,pancreas,gastro-intestinal tract,and adipose tissue.Thus,these agents significantly improve glycemic control and weight management and mitigate MASLD pathogenesis.Importantly,this study provides a summary of clinical trials analyzing the effect-iveness and safety of incretin receptor agonists in MASLD management and provides an in-depth analysis highlighting their beneficial effects on improving liver function,hepatic steatosis,and intrahepatic inflammation.There are emerging challenges associated with the use of these medications in the real world,particularly adverse events,drug-drug interactions,and barriers to access,which are discussed in detail.Additionally,this review highlights the evolving role of incretin receptor agonists in MASLD management and suggests future research directions.展开更多
This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani,which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)for metabolic dysfunction-associat...This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani,which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)for metabolic dysfunction-associated fatty liver disease.We provide supplementary insights to their research,highlighting the broader systemic implications of GLP-1RAs,synthesizing the current understanding of their mechanisms and the trajectory of research in this field.GLP-1RAs are revolutionizing the treatment of type 2 diabetes mellitus and beyond.Beyond glycemic control,GLP-1RAs demonstrate cardiovascular and renal protective effects,offering potential in managing diabetic kidney disease alongside renin–angiotensin–aldosterone system inhibitors.Their role in bone metabolism hints at benefits for diabetic osteoporosis,while the neuroprotective properties of GLP-1RAs show promise in Alzheimer's disease treatment by modulating neuronal insulin signaling.Additionally,they improve hormonal and metabolic profiles in polycystic ovary syndrome.This editorial highlights the multifaceted mechanisms of GLP-1RAs,emphasizing the need for ongoing research to fully realize their therapeutic potential across a range of multisystemic diseases.展开更多
Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that we...Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.展开更多
Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidin...Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Previous studies have documented that selective delivery of protein antigens to cells expressing mannose receptor (MR) can lead to enhanced immune responses. We postulated that agents that influenced the MR expressi...Previous studies have documented that selective delivery of protein antigens to cells expressing mannose receptor (MR) can lead to enhanced immune responses. We postulated that agents that influenced the MR expression level, and the activation and migration status of MR-expressing antigen presenting cells, would modulate immune responses to MR-targeted vaccines. To address this question, we investigated the effect of clinically used adjuvants in human MR transgenic (hMR-Tg) mice immunized with an MR-targeting cancer vaccine composed of the human anti-MR monoclonal antibody B 11 fused with the oncofetal protein, human chorionic gonadotropin beta chain (hCGβ), and referred to as B 11-hCGβ. We found that humoral responses to low doses of B11-hCGβ could be enhanced by prior administration of GM-CSF, which upregulated MR expression in vivo. However, co-administration of the Toll-like receptor (TLR) agonists, poly-ICLC and/or CpG with B11-hCGβ was required to elicit Thl immunity, as measured by antigen-specific T-cell production of IFN-γ. The TLR agonists were shown to increase the number of vaccine-containing cells in the draining lymph nodes of immunized hMR-Tg mice. In particular, with B11-hCGβand poly-ICLC, a dramatic increase in vaccine-positive cells was observed in the T-ceU areas of the lymph nodes, compared to the vaccine alone or combined with GM-CSF. Importantly, the absence of the TLR agonists during the priming immunization led to antigen-specific tolerance. Therefore, this study provides insight into the mechanisms by which adjuvants can augment immune responses to B11-hCGβ and have implications for the rationale design of clinical studies combining MR-targeted vaccination with TLR agonists.展开更多
The noble gas argon has the potential to protect neuronal cells from cell death.So far,this effect has been studied in treatment after acute damage.Preconditioning using argon has not yet been investigated.In this stu...The noble gas argon has the potential to protect neuronal cells from cell death.So far,this effect has been studied in treatment after acute damage.Preconditioning using argon has not yet been investigated.In this study,human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon(25%,50%,and 74%;21%O_(2),5%CO_(2),balance nitrogen)at different time intervals before inflicting damage with rotenone(20μM,4 hours).Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining.Surface expressions of Toll-like receptors 2 and 4 were also examined.Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins,such as extracellular-signal regulated kinase(ERK1/2),nuclear transcription factor-κB(NF-κB),protein kinase B(Akt),caspase-3,Bax,Bcl-2,interleukin-8,and heat shock proteins.Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8.Cells were also pretreated with OxPAPC,an antagonist of TLR2 and 4 to elucidate the molecular mechanism.Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells.Preconditioning with 74%argon for 2 hours was used for further experiments showing the most promising results.Argon decreased the surface expression of TLR2 and 4,whereas OxPAPC treatment partially abolished the protective effect of argon.Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt.Preconditioning inhibited mitochondrial apoptosis and the heat shock response.Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8.Immunohistochemistry confirmed the alteration of TLRs and interleukin-8.OxPAPC reversed the argon effect on ERK1/2,Bax,Bcl-2,caspase-3,and interleukin-8 expression,but not on NF-κB and the heat shock proteins.Taken together,argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors.Argon may represent a promising therapeutic alternative in various clinical settings,such as the treatment of stroke.展开更多
Type 1 diabetes is increasing and the majority of patients have poor glycemic control.Although advanced technology and nanoparticle use have greatly enhanced insulin delivery and glucose monitoring,weight gain and hyp...Type 1 diabetes is increasing and the majority of patients have poor glycemic control.Although advanced technology and nanoparticle use have greatly enhanced insulin delivery and glucose monitoring,weight gain and hypoglycemia remain major challenges and a constant source of concern for patients with type 1 diabetes.Type 1 diabetes shares some pathophysiology with type 2 diabetes,and an overlap has been reported.The above observation created great interest in glucagon-like peptide-1 receptor agonists(GLP-1)as adjuvants for type 1 diabetes.Previous trials confirmed the positive influence of GLP-1 agonists onβcell function.However,hypoglycemia unawareness and dysregulated glucagon response have been previously reported in patients with recurrent hypoglycemia using GLP-1 agonists.Jin et al found that the source of glucagon dysregulation due to GLP-1 agonists resides in the gut.Plausible explanations could be gut nervous system dysregulation or gut microbiota disruption.This review evaluates the potential of GLP-1 agonists in managing type 1 diabetes,particularly focusing on their impact on glycemic control,weight management,and glucagon dysregulation.We provide a broader insight into the problem of type 1 diabetes mellitus management in the light of recent findings and provide future research directions.展开更多
Objective Idiopathic nephrotic syndrome(INS)is the most common glomerular disease in children.Toll-like receptors(TLRs)have been reported to be associated with response to steroid treatment in children with INS.Nevert...Objective Idiopathic nephrotic syndrome(INS)is the most common glomerular disease in children.Toll-like receptors(TLRs)have been reported to be associated with response to steroid treatment in children with INS.Nevertheless,the correlation between TLR genes and the progression of INS has not yet been clarified.The present study aimed to investigate the association of single-nucleotide polymorphisms(SNPs)in TLR2,TLR4,and TLR9 with susceptibility to INS as well as the clinical phenotyping of steroid responsiveness in Chinese children with INS.Methods A total of 183 pediatric inpatients with INS were included and given standard steroid therapy.Based on their clinical response to steroids,the patients were classified into three groups:steroid-sensitive nephrotic syndrome(SSNS),steroid-dependent nephrotic syndrome(SDNS),and steroid-resistant nephrotic syndrome(SRNS).A total of 100 healthy children were employed as controls.The blood genome DNA was extracted from each participant.Six SNPs(rs11536889,rs1927914,rs7869402,rs11536891,rs352140,and rs3804099)in TLR2,TLR4,and TLR9 were selected and detected by multiplex polymerase chain reaction with next-generation sequencing to assess TLR gene polymorphisms.Results Among the 183 patients with INS,89(48.6%)had SSNS,73(39.9%)had SDNS,and 21(11.5%)had SRNS.No significant difference was found in the genotype distribution between healthy children and patients with INS.However,the genotype and allele frequencies of TLR4 rs7869402 were significantly different between SRNS and SSNS.Compared with patients with the C allele and CC genotype,patients with the T allele and CT genotype had an increased risk of SRNS.Conclusion TLR4 rs7869402 affected the steroid response in Chinese children with INS.It might be a predictor for the early detection of SRNS in this population.展开更多
BACKGROUND Fecal microbiota transplantation(FMT)has shown promising therapeutic effects on mice with experimental colitis and patients with ulcerative colitis(UC).FMT modulates the Toll-like receptor 4(TLR4)signaling ...BACKGROUND Fecal microbiota transplantation(FMT)has shown promising therapeutic effects on mice with experimental colitis and patients with ulcerative colitis(UC).FMT modulates the Toll-like receptor 4(TLR4)signaling pathway to treat some other diseases.However,it remains unknown whether this modulation is also involved in the treatment of UC.AIM To clarify the necessity of TLR4 signaling pathway in FMT on dextran sodium sulphate(DSS)-induced mice and explain the mechanism of FMT on UC,through association analysis of gut microbiota with colon transcriptome in mice.METHODS A mouse colitis model was constructed with wild-type(WT)and TLR4-knockout(KO)mice.Fecal microbiota was transplanted by gavage.Colon inflammation severity was measured by disease activity index(DAI)scoring and hematoxylin and eosin staining.Gut microbiota structure was analyzed through 16S ribosomal RNA sequencing.Gene expression in the mouse colon was obtained by transcriptome sequencing.RESULTS The KO(DSS+Water)and KO(DSS+FMT)groups displayed indistinguishable body weight loss,colon length,DAI score,and histology score,which showed that FMT could not inhibit the disease in KO mice.In mice treated with FMT,the relative abundance of Akkermansia decreased,and Lactobacillus became dominant.In particular,compared with those in WT mice,the scores of DAI and colon histology were clearly decreased in the KO-DSS group.Microbiota structure showed a significant difference between KO and WT mice.Akkermansia were the dominant genus in healthy KO mice.The ineffectiveness of FMT in KO mice was related to the decreased abundance of Akkermansia.Gene Ontology enrichment analysis showed that differentially expressed genes between each group were mainly involved in cytoplasmic translation and cellular response to DNA damage stimulus.The top nine genes correlating with Akkermansia included Aqp4,Clca4a,Dpm3,Fau,Mcrip1,Meis3,Nupr1 L,Pank3,and Rps13(|R|>0.9,P<0.01).CONCLUSION FMT may ameliorate DSS-induced colitis by regulating the TLR4 signaling pathway.TLR4 modulates the composition of gut microbiota and the expression of related genes to ameliorate colitis and maintain the stability of the intestinal environment.Akkermansia bear great therapeutic potential for colitis.展开更多
基金Supported by the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China,No.LHDMZ22H050001the Construction of Key Projects by Zhejiang Provincial Ministry,No.WKJ-ZJ-2302+3 种基金the Zhejiang Province Chinese Medicine Modernization Program,No.2020ZX001the Key Project of Scientific Research Foundation of Chinese Medicine,No.2022ZZ002the“Pioneer”and“LeadingGoose”R&D Program of Zhejiang,No.2022C03118 and 2023C03075the Key Project of Basic Scientific Research Operating Funds of Hangzhou Medical College,No.KYZD202002.
文摘BACKGROUND Diabetic kidney disease(DKD)is a major complication of diabetes mellitus.Renal tubular epithelial cell(TEC)damage,which is strongly associated with the inflammatory response and mesenchymal trans-differentiation,plays a significant role in DKD;However,the precise molecular mechanism is unknown.The recently identified microRNA-630(miR-630)has been hypothesized to be closely associated with cell migration,apoptosis,and autophagy.However,the association between miR-630 and DKD and the underlying mechanism remain unknown.AIM To investigate how miR-630 affects TEC injury and the inflammatory response in DKD rats.METHODS Streptozotocin was administered to six-week-old male rats to create a hypergly cemic diabetic model.In the second week of modeling,the rats were divided into control,DKD,negative control of lentivirus,and miR-630 overexpression groups.After 8 wk,urine and blood samples were collected for the kidney injury assays,and renal tissues were removed for further molecular assays.The target gene for miR-630 was predicted using bioinformatics,and the association between miR-630 and toll-like receptor 4(TLR4)was confirmed using in vitro investigations and double luciferase reporter gene assays.Overexpression of miR-630 in DKD rats led to changes in body weight,renal weight index,basic blood parameters and histopathological changes.RESULTS The expression level of miR-630 was reduced in the kidney tissue of rats with DKD(P<0.05).The miR-630 and TLR4 expressions in rat renal TECs(NRK-52E)were measured using quantitative reverse transcription polymerase chain reaction.The mRNA expression level of miR-630 was significantly lower in the high-glucose(HG)and HG+mimic negative control(NC)groups than in the normal glucose(NG)group(P<0.05).In contrast,the mRNA expression level of TLR4 was significantly higher in these groups(P<0.05).However,miR-630 mRNA expression increased and TLR4 mRNA expression significantly decreased in the HG+miR-630 mimic group than in the HG+mimic NC group(P<0.05).Furthermore,the levels of tumor necrosis factor-alpha(TNF-α),interleukin-1β(IL-1β),and IL-6 were significantly higher in the HG and HG+mimic NC groups than in NG group(P<0.05).However,the levels of these cytokines were significantly lower in the HG+miR-630 mimic group than in the HG+mimic NC group(P<0.05).Notably,changes in protein expression were observed.The HG and HG+mimic NC groups showed a significant decrease in E-cadherin protein expression,whereas TLR4,α-smooth muscle actin(SMA),and collagen IV protein expression increased(P<0.05).Conversely,the HG+miR-630 mimic group exhibited a significant increase in E-cadherin protein expression and a notable decrease in TLR4,α-SMA,and collagen IV protein expression than in the HG+mimic NC group(P<0.05).The miR-630 targets TLR4 gene expression.In vivo experiments demonstrated that DKD rats treated with miR-630 agomir exhibited significantly higher miR-630 mRNA expression than DKD rats injected with agomir NC.Additionally,rats treated with miR-630 agomir showed significant reductions in urinary albumin,blood glucose,TLR4,and proinflammatory markers(TNF-α,IL-1β,and IL-6)expression levels(P<0.05).Moreover,these rats exhibited fewer kidney lesions and reduced infiltration of inflammatory cells.CONCLUSION MiR-630 may inhibit the inflammatory reaction of DKD by targeting TLR4,and has a protective effect on DKD.
文摘Type 1 diabetes(T1D)is a chronic autoimmune condition that destroys insulinproducing beta cells in the pancreas,leading to insulin deficiency and hyperglycemia.The management of T1D primarily focuses on exogenous insulin replacement to control blood glucose levels.However,this approach does not address the underlying autoimmune process or prevent the progressive loss of beta cells.Recent research has explored the potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)as a novel intervention to modify the disease course and delay the onset of T1D.GLP-1RAs are medications initially developed for treating type 2 diabetes.They exert their effects by enhancing glucose-dependent insulin secretion,suppressing glucagon secretion,and slowing gastric emptying.Emerging evidence suggests that GLP-1RAs may also benefit the treatment of newly diagnosed patients with T1D.This article aims to highlight the potential of GLP-1RAs as an intervention to delay the onset of T1D,possibly through their potential immunomodulatory and anti-inflammatory effects and preservation of beta-cells.This article aims to explore the potential of shifting the paradigm of T1D management from reactive insulin replacement to proactive disease modification,which should open new avenues for preventing and treating T1D,improving the quality of life and long-term outcomes for individuals at risk of T1D.
文摘In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.
基金supported by The Beijing Natural Science Foundation[No.7202216]the National Natural Science Foundation of China[No.81970698 and No.81970708].
文摘Objective Recent studies have indicated potential anti-inflammatory effects of glucagon-like peptide-1 receptor agonists(GLP-1RAs)on asthma,which is often comorbid with type 2 diabetes mellitus(T2DM)and obesity.Therefore,we conducted a meta-analysis to assess the association between the administration of glucagon-like peptide-1(GLP-1)receptor-based agonists and the incidence of asthma in patients with T2DM and/or obesity.Methods PubMed,Web of Science,Embase,the Cochrane Central Register of Controlled Trials,and Clinicaltrial.gov were systematically searched from inception to July 2023.Randomized controlled trials(RCTs)of GLP-1 receptor-based agonists(GLP-1RA,GLP-1 based dual and triple receptor agonist)with reports of asthma events were included.Outcomes were computed as risk ratios(RR)using a fixedeffects model.Results Overall,39 RCTs with a total of 85,755 participants were included.Compared to non-GLP-1 receptor-based agonist users,a trend of reduced risk of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments,although the difference was not statistically significant[RR=0.91,95%confidence interval(CI):0.68 to 1.24].Further Subgroup analyses indicated that the use of light-molecular-weight GLP-1RAs might be associated with a reduced the risk of asthma when compared with non-users(RR=0.65,95%CI:0.43 to 0.99,P=0.043).We also performed sensitivity analyses for participant characteristics,study design,drug structure,duration of action,and drug subtypes.However,no significant associations were observed.Conclusion Compared with non-users,a modest reduction in the incidence of asthma was observed in patients with T2DM or obesity using GLP-1 receptor-based agonist treatments.Further investigations are warranted to assess the association between GLP-1 receptor-based agonists and the risk of asthma.
基金supported by the Clinical Medical Technology Innovation Project of Hunan Science and Technology Agency,China(Project No.:2021SK53519).
文摘Atrial fibrillation(AF)is the most common cardiac arrhythmia.Many medical conditions,including hypertension,diabetes,obesity,sleep apnea,and heart failure(HF),increase the risk for AF.Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production.Significant changes occur in myocardial metabolism in AF.Glucagon-like peptide-1 receptor agonists(GLP-1RAs)have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus(T2DM)and obesity.GLP-1RAs have also been shown to reduce oxidative stress,inflammation,autonomic nervous system modulation,and mitochondrial function.This article reviews the changes in metabolic characteristics in cardiomyocytes in AF.Although the clinical trial outcomes are unsatisfactory,the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors,lowering the incidence of AF.
文摘Practical guide:Glucagon-like peptide-1 and dual glucosedependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus common second-line choice after metformin for treating T2DM.Various considerations can make selecting and switching between different GLP-1 RAs challenging.Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.
基金Supported by Natural Science Foundation in Anhui Province of China,No.2008085MH279Key Project of Anhui Translational Medicine Research Institute,No.2022zhyx-B08.
文摘BACKGROUND N6-methyladenosine(m6A)modification represents the predominant alteration found in eukaryotic messenger RNA and plays a crucial role in the progression of various tumors.However,despite its significance,the comprehensive investigation of METTL5,a key m6A methyltransferase,in colorectal cancer(CRC)remains limited.AIM To investigate the role of METTL5 in CRC.METHODS We assessed METTL5 expression levels in clinical samples obtained from CRC patients as well as in CRC cell lines.To elucidate the downstream targets of METTL5,we performed RNA-sequencing analysis coupled with correlation analysis,leading us to identify Toll-like receptor 8(TLR8)as a potential downstream target.In vitro functional assessments of METTL5 and TLR8 were conducted using CCK-8 assays,scratch assays,as well as assays measuring cell migration and invasion.RESULTS Our findings reveal a pronounced upregulation of METTL5 expression in both CRC cells and tissues,which correlated significantly with an unfavorable prognosis.In vitro experiments unequivocally demonstrated the oncogenic role of METTL5,as evidenced by its promotion of CRC cell proliferation,invasion,and migration.Notably,we identified TLR8 as a downstream target of METTL5,and subsequent down-regulation of TLR8 led to a significant inhibition of CRC cell proliferation,invasion,and tumor growth.CONCLUSION The heightened expression of METTL5 in CRC is strongly associated with clinicopathological features and a poor prognosis,thereby underscoring its potential utility as a critical marker for facilitating early diagnosis and prognostication in CRC.
基金This work was supported by grants from the National Natural Science Foundation of China(No.82304000).
文摘Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China.
文摘Glucagon-like peptide receptor agonists(GLP-1RA)are used to treat type 2 diabetes mellitus and,more recently,have garnered attention for their effect-iveness in promoting weight loss.They have been associated with several gastrointestinal adverse effects,including nausea and vomiting.These side effects are presumed to be due to increased residual gastric contents.Given the potential risk of aspiration and based on limited data,the American Society of Anesthesi-ologists updated the guidelines concerning the preoperative management of patients on GLP-1RA in 2023.They included the duration of mandated cessation of GLP-1RA before sedation and usage of“full stomach”precautions if these medications were not appropriately held before the procedure.This has led to additional challenges,such as extended waiting time,higher costs,and increased risk for patients.In this editorial,we review the current societal guidelines,clinical practice,and future directions regarding the usage of GLP-1RA in patients undergoing an endoscopic procedure.
基金Supported by China Scholarship Council,No.202006920018Key Talent Program for Medical Applications of Nuclear Technology,No.XKTJ-HRC2021007+2 种基金the Second Affiliated Hospital of Soochow University,No.SDFEYBS1815 and No.SDFEYBS2008National Natural Science Foundation of China,No.82170831The Jiangsu Innovation&Career Fund for PhD 2019.
文摘BACKGROUND Glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are associated with significant cardiovascular benefit in type 2 diabetes(T2D).However,GLP-1RA or SGLT-2I alone may not improve some cardiovascular outcomes in patients with prior cardiovascular co-morbidities.AIM To explore whether combining GLP-1RA and SGLT-2I can achieve additional benefit in preventing cardiovascular diseases in T2D.METHODS The systematic review was conducted according to PRISMA recommendations.The protocol was registered on PROSPERO(ID:42022385007).A total of 107049 participants from eligible cardiovascular outcomes trials of GLP-1RA and SGLT-2I were included in network meta-regressions to estimate cardiovascular benefit of the combination treatment.Effect modification of prior myocardial infarction(MI)and heart failure(HF)was also explored to provide clinical insight as to when the INTRODUCTION The macro-and micro-vascular benefits of glucagon-like peptide-1 receptor agonists(GLP-1RA)and sodium-glucose co-transporter-2 inhibitors(SGLT-2I)are independent of their glucose-lowering effects[1].In patients with type 2 diabetes(T2D),the major cardiovascular outcome trials(CVOT)showed that dipeptidyl peptidase-4 inhibitors(DPP-4I)did not improve cardiovascular outcomes[2],whereas cardiovascular benefit of GLP-1RA or SGLT-2I was significant[3,4].Further subgroup analyses indicated that the background cardiovascular risk should be considered when examining the cardiovascular outcomes of these newer glucose-lowering medications.For instance,prevention of major adverse cardiovascular events(MACE)was only seen in those patients with baseline atherosclerotic cardiovascular disease[3,4].Moreover,a series of CVOT conducted in patients with heart failure(HF)have demonstrated that(compared with placebo)SGLT-2I significantly reduced risk of hospitalization for HF or cardiovascular death,irrespective of their history of T2D[5-8].However,similar cardiovascular benefits were not observed in those with myocardial infarction(MI)[9,10].Cardiovascular co-morbidities are not only approximately twice as common but are also associated with dispropor-tionately worse cardiovascular outcomes in patients with T2D,compared to the general population[11].Therefore,it is of clinical importance to investigate whether the combination treatment of GLP-1RA and SGLT-2I could achieve greater cardiovascular benefit,particularly when considering patients with cardiovascular co-morbidities who may not gain sufficient cardiovascular protection from the monotherapies.This systematic review with multiple network meta-regressions was mainly aimed to explore whether combining GLP-1RA and SGLT-2I can provide additional cardiovascular benefit in T2D.Cardiovascular outcomes of these newer antidiabetic medications were also estimated under effect modification of prior cardiovascular diseases.This was to provide clinical insight as to when the combination treatment might be prioritized.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)has become the most common chronic liver disease worldwide,paralleling the rising pandemic of obesity and type 2 diabetes.Due to the growing global health burden and com-plex pathogenesis of MASLD,a multifaceted and innovative therapeutic approach is needed.Incretin receptor agonists,which were initially developed for diabetes management,have emerged as promising candidates for MASLD treatment.This review describes the pathophysiological mechanisms and action sites of three major classes of incretin/glucagon receptor agonists:glucagon-like peptide-1 receptor agonists,glucose-dependent insulinotropic polypeptide receptor agonists,and glucagon receptor agonists.Incretins and glucagon directly or indirectly impact various organs,including the liver,brain,pancreas,gastro-intestinal tract,and adipose tissue.Thus,these agents significantly improve glycemic control and weight management and mitigate MASLD pathogenesis.Importantly,this study provides a summary of clinical trials analyzing the effect-iveness and safety of incretin receptor agonists in MASLD management and provides an in-depth analysis highlighting their beneficial effects on improving liver function,hepatic steatosis,and intrahepatic inflammation.There are emerging challenges associated with the use of these medications in the real world,particularly adverse events,drug-drug interactions,and barriers to access,which are discussed in detail.Additionally,this review highlights the evolving role of incretin receptor agonists in MASLD management and suggests future research directions.
基金Supported by National Natural Science Foundation of China,No.U23A20398 and No.82030007Sichuan Science and Technology Program,No.2022YFS0578.
文摘This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani,which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)for metabolic dysfunction-associated fatty liver disease.We provide supplementary insights to their research,highlighting the broader systemic implications of GLP-1RAs,synthesizing the current understanding of their mechanisms and the trajectory of research in this field.GLP-1RAs are revolutionizing the treatment of type 2 diabetes mellitus and beyond.Beyond glycemic control,GLP-1RAs demonstrate cardiovascular and renal protective effects,offering potential in managing diabetic kidney disease alongside renin–angiotensin–aldosterone system inhibitors.Their role in bone metabolism hints at benefits for diabetic osteoporosis,while the neuroprotective properties of GLP-1RAs show promise in Alzheimer's disease treatment by modulating neuronal insulin signaling.Additionally,they improve hormonal and metabolic profiles in polycystic ovary syndrome.This editorial highlights the multifaceted mechanisms of GLP-1RAs,emphasizing the need for ongoing research to fully realize their therapeutic potential across a range of multisystemic diseases.
文摘Background: The objective of this study was to compare and analyze the variations in clinical indices before and after treatment of type 2 mellitus (T2DM) combined with nonalcoholic fatty liver disease (NAFLD) that were treated with glucagon-like peptide 1 receptor agonists (GLP-1RAs). Methods: The electronic medical record system was utilized to search for a total of 16 patients with type 2 diabetes complicated by NAFLD who were hospitalized at the First Affiliated Hospital of Yangtze University from October 2022 to April 2023 and treated with GLP-1RA for the first time. The clinical indices were compared before and after 12 weeks of treatment with GLP-1RA. Results: The liver-spleen CT ratio (L/S), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in all patients treated with GLP-1RA after 12 weeks were significantly different (P 0.05). The patients were categorized into two groups based on the types of GLP-1RAs. The changes in L/S, TC, TG, and LDL-C in the long-acting group after treatment were statistically significant (P Conclusions: GLP-1RAs can improve liver function, regulate lipid metabolism, and reduce the severity of fatty liver in patients with T2DM complicated by NAFLD, which demonstrates the importance of clinical applications.
文摘Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
文摘Previous studies have documented that selective delivery of protein antigens to cells expressing mannose receptor (MR) can lead to enhanced immune responses. We postulated that agents that influenced the MR expression level, and the activation and migration status of MR-expressing antigen presenting cells, would modulate immune responses to MR-targeted vaccines. To address this question, we investigated the effect of clinically used adjuvants in human MR transgenic (hMR-Tg) mice immunized with an MR-targeting cancer vaccine composed of the human anti-MR monoclonal antibody B 11 fused with the oncofetal protein, human chorionic gonadotropin beta chain (hCGβ), and referred to as B 11-hCGβ. We found that humoral responses to low doses of B11-hCGβ could be enhanced by prior administration of GM-CSF, which upregulated MR expression in vivo. However, co-administration of the Toll-like receptor (TLR) agonists, poly-ICLC and/or CpG with B11-hCGβ was required to elicit Thl immunity, as measured by antigen-specific T-cell production of IFN-γ. The TLR agonists were shown to increase the number of vaccine-containing cells in the draining lymph nodes of immunized hMR-Tg mice. In particular, with B11-hCGβand poly-ICLC, a dramatic increase in vaccine-positive cells was observed in the T-ceU areas of the lymph nodes, compared to the vaccine alone or combined with GM-CSF. Importantly, the absence of the TLR agonists during the priming immunization led to antigen-specific tolerance. Therefore, this study provides insight into the mechanisms by which adjuvants can augment immune responses to B11-hCGβ and have implications for the rationale design of clinical studies combining MR-targeted vaccination with TLR agonists.
基金supported by the Department of Anesthesiology and Critical Care,Medical Center-University of Freiburg,Germanyfunded by the Baden-Wuerttemberg Ministry of Science,Research and Art and the University of Freiburg in the funding program Open Access Publishing
文摘The noble gas argon has the potential to protect neuronal cells from cell death.So far,this effect has been studied in treatment after acute damage.Preconditioning using argon has not yet been investigated.In this study,human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon(25%,50%,and 74%;21%O_(2),5%CO_(2),balance nitrogen)at different time intervals before inflicting damage with rotenone(20μM,4 hours).Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining.Surface expressions of Toll-like receptors 2 and 4 were also examined.Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins,such as extracellular-signal regulated kinase(ERK1/2),nuclear transcription factor-κB(NF-κB),protein kinase B(Akt),caspase-3,Bax,Bcl-2,interleukin-8,and heat shock proteins.Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8.Cells were also pretreated with OxPAPC,an antagonist of TLR2 and 4 to elucidate the molecular mechanism.Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells.Preconditioning with 74%argon for 2 hours was used for further experiments showing the most promising results.Argon decreased the surface expression of TLR2 and 4,whereas OxPAPC treatment partially abolished the protective effect of argon.Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt.Preconditioning inhibited mitochondrial apoptosis and the heat shock response.Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8.Immunohistochemistry confirmed the alteration of TLRs and interleukin-8.OxPAPC reversed the argon effect on ERK1/2,Bax,Bcl-2,caspase-3,and interleukin-8 expression,but not on NF-κB and the heat shock proteins.Taken together,argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors.Argon may represent a promising therapeutic alternative in various clinical settings,such as the treatment of stroke.
文摘Type 1 diabetes is increasing and the majority of patients have poor glycemic control.Although advanced technology and nanoparticle use have greatly enhanced insulin delivery and glucose monitoring,weight gain and hypoglycemia remain major challenges and a constant source of concern for patients with type 1 diabetes.Type 1 diabetes shares some pathophysiology with type 2 diabetes,and an overlap has been reported.The above observation created great interest in glucagon-like peptide-1 receptor agonists(GLP-1)as adjuvants for type 1 diabetes.Previous trials confirmed the positive influence of GLP-1 agonists onβcell function.However,hypoglycemia unawareness and dysregulated glucagon response have been previously reported in patients with recurrent hypoglycemia using GLP-1 agonists.Jin et al found that the source of glucagon dysregulation due to GLP-1 agonists resides in the gut.Plausible explanations could be gut nervous system dysregulation or gut microbiota disruption.This review evaluates the potential of GLP-1 agonists in managing type 1 diabetes,particularly focusing on their impact on glycemic control,weight management,and glucagon dysregulation.We provide a broader insight into the problem of type 1 diabetes mellitus management in the light of recent findings and provide future research directions.
基金This study was funded by the Science and Technology Projects of Zhejiang Province(No.LGC21H200004)the Key Research and Development Plan of Zhejiang Province(No.2019C03028)the Medical Scientific Projects from Health Department of Zhejiang Province(No.2018KY455)。
文摘Objective Idiopathic nephrotic syndrome(INS)is the most common glomerular disease in children.Toll-like receptors(TLRs)have been reported to be associated with response to steroid treatment in children with INS.Nevertheless,the correlation between TLR genes and the progression of INS has not yet been clarified.The present study aimed to investigate the association of single-nucleotide polymorphisms(SNPs)in TLR2,TLR4,and TLR9 with susceptibility to INS as well as the clinical phenotyping of steroid responsiveness in Chinese children with INS.Methods A total of 183 pediatric inpatients with INS were included and given standard steroid therapy.Based on their clinical response to steroids,the patients were classified into three groups:steroid-sensitive nephrotic syndrome(SSNS),steroid-dependent nephrotic syndrome(SDNS),and steroid-resistant nephrotic syndrome(SRNS).A total of 100 healthy children were employed as controls.The blood genome DNA was extracted from each participant.Six SNPs(rs11536889,rs1927914,rs7869402,rs11536891,rs352140,and rs3804099)in TLR2,TLR4,and TLR9 were selected and detected by multiplex polymerase chain reaction with next-generation sequencing to assess TLR gene polymorphisms.Results Among the 183 patients with INS,89(48.6%)had SSNS,73(39.9%)had SDNS,and 21(11.5%)had SRNS.No significant difference was found in the genotype distribution between healthy children and patients with INS.However,the genotype and allele frequencies of TLR4 rs7869402 were significantly different between SRNS and SSNS.Compared with patients with the C allele and CC genotype,patients with the T allele and CT genotype had an increased risk of SRNS.Conclusion TLR4 rs7869402 affected the steroid response in Chinese children with INS.It might be a predictor for the early detection of SRNS in this population.
基金the Scientific Research Project of Jiangsu Provincial Health Commission,No.H2018082Huai’an Natural Science Research Project Project,No.HAB201926Scientific Research Project of Translational Medicine Innovation Team of Huai’an First People’s Hospital,No.YZHT201905.
文摘BACKGROUND Fecal microbiota transplantation(FMT)has shown promising therapeutic effects on mice with experimental colitis and patients with ulcerative colitis(UC).FMT modulates the Toll-like receptor 4(TLR4)signaling pathway to treat some other diseases.However,it remains unknown whether this modulation is also involved in the treatment of UC.AIM To clarify the necessity of TLR4 signaling pathway in FMT on dextran sodium sulphate(DSS)-induced mice and explain the mechanism of FMT on UC,through association analysis of gut microbiota with colon transcriptome in mice.METHODS A mouse colitis model was constructed with wild-type(WT)and TLR4-knockout(KO)mice.Fecal microbiota was transplanted by gavage.Colon inflammation severity was measured by disease activity index(DAI)scoring and hematoxylin and eosin staining.Gut microbiota structure was analyzed through 16S ribosomal RNA sequencing.Gene expression in the mouse colon was obtained by transcriptome sequencing.RESULTS The KO(DSS+Water)and KO(DSS+FMT)groups displayed indistinguishable body weight loss,colon length,DAI score,and histology score,which showed that FMT could not inhibit the disease in KO mice.In mice treated with FMT,the relative abundance of Akkermansia decreased,and Lactobacillus became dominant.In particular,compared with those in WT mice,the scores of DAI and colon histology were clearly decreased in the KO-DSS group.Microbiota structure showed a significant difference between KO and WT mice.Akkermansia were the dominant genus in healthy KO mice.The ineffectiveness of FMT in KO mice was related to the decreased abundance of Akkermansia.Gene Ontology enrichment analysis showed that differentially expressed genes between each group were mainly involved in cytoplasmic translation and cellular response to DNA damage stimulus.The top nine genes correlating with Akkermansia included Aqp4,Clca4a,Dpm3,Fau,Mcrip1,Meis3,Nupr1 L,Pank3,and Rps13(|R|>0.9,P<0.01).CONCLUSION FMT may ameliorate DSS-induced colitis by regulating the TLR4 signaling pathway.TLR4 modulates the composition of gut microbiota and the expression of related genes to ameliorate colitis and maintain the stability of the intestinal environment.Akkermansia bear great therapeutic potential for colitis.