We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane us...We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.展开更多
This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with ...This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with the two point fast ray tracing technique. By means of theoretical modeling, the monitoring function of the observatory network system of Shaanxi Province was tested. Using the seismic data of the network, seismic tomographic inversion imaging of the crustal seismic velocity in the Weihe fault basin was studied. The results are as follows: In the Tongchuan Yaoxian area to the north of Jingyang, there is a high velocity region extending nearly in NS direction, the highest velocity value is around Tongchuan. To the southwest of Shangxian and Lantian, there is a low velocity zone about 100 km long and about 50 km wide, inside which there are two regions of the lowest velocity 50 km apart. The epicenters of historical strong earthquakes are mainly on the boundary of high velocity regions or in regions of fairly high velocity. In the eastern and western parts of the south margin of the Qinling Mountains, there is an obvious lateral nonhomogeneity of seismic velocity.展开更多
Under the assumption of weak scattering , the acoustical diffraction tomographic imaging of an object can be reconstructed by using the Born (or Rytov) approximation method . When the weak scattering assumption within...Under the assumption of weak scattering , the acoustical diffraction tomographic imaging of an object can be reconstructed by using the Born (or Rytov) approximation method . When the weak scattering assumption within the medium is not satisfied the multiple ultrasound scattering must be taken into account . In this case , the reconstruction results under the first-order Born approximation will be seriously distorted . In this paper we introduce an ' intermediate object function' into the wave equation and take iterative modification in space domain and spatial frequancy domain based on Born approximation . In this way , the distorted image will be improved step by step . In order to examine the method as mentioned above , we have just tried to make computerized simulations . The initial result shows that the quality of the image reconstructed from the object under non-weak scattering may be improved significantly .展开更多
To simultaneously obtain high-resolution multi-wavelength (from visible to near infrared) tomographic images of the solar atmosphere, a high-performance multi-wavelength optical filter has to be used in solar imagin...To simultaneously obtain high-resolution multi-wavelength (from visible to near infrared) tomographic images of the solar atmosphere, a high-performance multi-wavelength optical filter has to be used in solar imaging telescopes. In this Letter, the fabrication of the multi-wavelength filter for solar tomographic imaging is described in detail. For this filter, Ta2O5 and SiO2 are used as high- and low-index materials, respectively, and the multilayer structure is optimized by commercial Optilayer software at a 7.5° angle of incidence. Experimentally, this multi-wavelength optical filter is prepared by a plasma ion-assisted deposition technique with optimized deposition parameters. High transmittance at 393.3, 396.8, 430.5, 525, 532.4, 656.8, 705.8, 854.2, 1083, and 1565.3 nm, as well as high reflectance at 500 and 589 nm are achieved. Excellent environmental durability, demonstrated via temperature and humidity tests, is also established.展开更多
We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate ...We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the co-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient展开更多
For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of micros...For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.展开更多
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number ...Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).展开更多
The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry...The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.展开更多
The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary l...The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.展开更多
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-insp...Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag.展开更多
Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for threedimensional three-comp...Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for threedimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light intensity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding reconstruction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image reconstruction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computational analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.展开更多
The state-of-the-art approaches for image reconstruction using under-sampled k-space data are compressed sensing based.They are iterative algorithms that optimize objective functions with spatial and/or temporal const...The state-of-the-art approaches for image reconstruction using under-sampled k-space data are compressed sensing based.They are iterative algorithms that optimize objective functions with spatial and/or temporal constraints.This paper proposes a non-iterative algorithm to estimate the un-measured data and then to reconstruct the image with the efficient filtered backprojection algorithm.The feasibility of the proposed method is demonstrated with a patient magnetic resonance imaging study.The proposed method is also compared with the state-of-the-art iterative compressed-sensing image reconstruction method using the total-variation optimization norm.展开更多
Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomogr...Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.展开更多
The development of deep learning has inspired some new methods to solve the 3D reconstruction problem for Tomographic Particle Image Velocimetry (Tomo-PIV). However, the supervised learning method requires a large num...The development of deep learning has inspired some new methods to solve the 3D reconstruction problem for Tomographic Particle Image Velocimetry (Tomo-PIV). However, the supervised learning method requires a large number of data with ground truth as training information, which is very difficult to gather from experiments. Although synthetic datasets can be used as alternatives, they are still not exactly the same with the real-world experimental data. In this paper, an Unsupervised Reconstruction Technique based on U-net (UnRTU) is proposed to reconstruct volume particle distribution explicitly. Instead of using ground truth data, a projection function is used as an unsupervised loss function for network training to reconstruct particle distribution. The UnRTU was compared with some traditional algebraic reconstruction algorithms and supervised learning method using synthetic data under different particle density and noise level. The results indicate that UnRTU outperforms these traditional approaches in both reconstruction quality and noise robustness, and is comparable to the supervised learning methods AI-PR. For experimental tests, particles dispersed in cured epoxy resin are moved by an electric rail with a certain speed to obtain the ground truth data of particle velocity. Compared with other algorithms, the reconstructed particle distribution by UnRTU has the best reconstruction fidelity. And the accuracy of the 3D velocity field estimated by UnRTU is 12.9% higher than that from the traditional MLOS-MART algorithm. It demonstrates significant potential and advantages for UnRTU in 3D reconstruction of particle distribution. Finally, UnRTU was successfully applied to the high-speed planar cascade airflow field, demonstrating its applicability for measuring complex fluid flow fields at higher particle density.展开更多
A large field of view is in high demand for disease diagnosis in clinical applications of optical coherence tomography(OCT)and OCT angiography(OCTA)imaging.Due to limits on the optical scanning range,the scanning spee...A large field of view is in high demand for disease diagnosis in clinical applications of optical coherence tomography(OCT)and OCT angiography(OCTA)imaging.Due to limits on the optical scanning range,the scanning speed,or the data processing speed,only a relatively small region could be acquired and processed for most of the current clinical OCT systems at one time and could generate a mosaic image of multiple adjacent small-region images with registration algorithms for disease analysis.In this work,we investigated performing cross-correlation(instead of phase-correlation)in the workflow of the Fourier–Mellin transform(FMT)method(called dual-cross-correlation-based translation and rotation registration,DCCTRR)for calculating translation and orientation offsets and compared its performance to the FMT method used on OCTA images alignment.Both phantom and in vivo experiments were implemented for comparisons,and the results quantitatively demonstrate that DCCTRR can align OCTA images with a lower overlap rate,which could improve the scanning efficiency of large-scale imaging in clinical applications.展开更多
This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexi...This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.展开更多
High-resolution tomographic images of the belt crossing the Japan Trench-Changbai Mountains-Dong Ujimqin Qi are represented in this paper, revealing the shape of a subducted slab in the western Pacific region and char...High-resolution tomographic images of the belt crossing the Japan Trench-Changbai Mountains-Dong Ujimqin Qi are represented in this paper, revealing the shape of a subducted slab in the western Pacific region and characteristics of the lithospheric structures under the Changbai Mountains and the Da Hinggan Mountains. Studies of the spatial distribution, subduction time and the time-lag between the subduction and magmatism, combined with petrology and isotope geochemistry of the Late Mesozoic volcano-plutonic rocks from the Da Hinggan Mountains-Yanshan Mountains have further proved the independence of magmatic activities from the subduction of the Pacific plate. The Mesozoic tectono-thermal evolutionary history and structural characteristics of the lithosphere in the Da Hinggan Mountains and North China suggest that the formation and evolution of magma have probably a close relationship with the delamination and thinning of the continental lithosphere and the underplating resulting from the consequent upwelling of the asthenosphere. On the other hand, the large-scale strike-slip fault system, resulting from sinistral shearing of the Pacific plate relative to the Asian continent in the Mesozoic, is responsible for the formation and emplacement of magma on the continental margin. It was the intense crust-mantle interaction, together with structural deformation at the shallower levels that led to the large tectono-magmatic belt in the East Asian continental margin.展开更多
The 3D P-wave velocity structure beneath the South China Block was determined by applying arrival times from 269 teleseismic events recorded by 240 seismic stations within the study region. Our tomographic results rev...The 3D P-wave velocity structure beneath the South China Block was determined by applying arrival times from 269 teleseismic events recorded by 240 seismic stations within the study region. Our tomographic results reveal the deep structural characteristics of major tectonic units and ore concentration areas. There are distinct high velocity anomalies beneath the ancient Yangtze and Cathaysia blocks, with the lithosphere of the Cathaysia Block being thinner than the Yangtze Block;the Jiangnan orogenic belt, located in the combined zone of two blocks, is a high and low velocity anomaly conversion zone;the famous metallogenic belts of Edongnan, the Youjiang Basin and the Cathaysia Block are obviously low velocity areas with different metallogenic mechanisms. The deep ore-forming material source in the Edongnan metallogenic belt is different from that of the Cathaysia Block. The low velocity anomaly under the Cathaysia Block related to mineralization results from the upwelling of mantle material, caused by the joint action of the Paleo-Tethys tectonic domain, the Paleo-Pacific tectonic domain and the Hainan mantle plume migration and erosion, which has been occurring from northeast to southwest since 80 Ma. The low-temperature mineralization mechanism of Youjiang Basin should be considered not only in terms of the influence of the Emeishan mantle plume in the west and the Paleo-Tethys tectonic domain in the south, but also in the context of the influence of the upwelling of asthenospheric material from the PaleoPacific tectonic domain in the east.展开更多
The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by ...The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remains valid.展开更多
Compared with port fuel injection engines, direct injection(DI) gasoline engine is becoming the mainstream of gasoline engines because of its higher fuel economy and excellent transient response. It has been proven th...Compared with port fuel injection engines, direct injection(DI) gasoline engine is becoming the mainstream of gasoline engines because of its higher fuel economy and excellent transient response. It has been proven that fuel spray characteristics in DI engines are crucial to the performance and emission quality of the engine. Flash boiling spray has great potential to achieve high fuel economy and low emission by dramatically improving the fuel atomization and vaporization and it has different spray-air interaction behavior as compared with non-flash boiling one, while its mechanism is more complex as compared with subcooled spray. We investigate the time-resolved spatial velocity field of the spray using 2-camera high-speed 3 D3 C(3-dimension 3-component)tomographic particle image velocimetry(PIV) diagnostic technique. A 10 mm thick laser sheet is used to illuminate the fuel spray. Characteristics of both non-flash and flash boiling sprays are studied. A single-hole injector is mounted within a heat exchanger so that different fuel temperature can be accessed. In the experiment, n-pentane is used as the fuel. For the non-flash boiling spray, the velocity field of the liquid spray is mostly consistent to the injection direction. With the increase of the degree of superheat(Do S), the overall velocity scale decreases especially at the spray tip. Meanwhile, larger swirls occur at the lower part of the flash boiling spray, which means stronger spray-air interaction occurs at a higher Do S.展开更多
文摘We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.
文摘This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with the two point fast ray tracing technique. By means of theoretical modeling, the monitoring function of the observatory network system of Shaanxi Province was tested. Using the seismic data of the network, seismic tomographic inversion imaging of the crustal seismic velocity in the Weihe fault basin was studied. The results are as follows: In the Tongchuan Yaoxian area to the north of Jingyang, there is a high velocity region extending nearly in NS direction, the highest velocity value is around Tongchuan. To the southwest of Shangxian and Lantian, there is a low velocity zone about 100 km long and about 50 km wide, inside which there are two regions of the lowest velocity 50 km apart. The epicenters of historical strong earthquakes are mainly on the boundary of high velocity regions or in regions of fairly high velocity. In the eastern and western parts of the south margin of the Qinling Mountains, there is an obvious lateral nonhomogeneity of seismic velocity.
文摘Under the assumption of weak scattering , the acoustical diffraction tomographic imaging of an object can be reconstructed by using the Born (or Rytov) approximation method . When the weak scattering assumption within the medium is not satisfied the multiple ultrasound scattering must be taken into account . In this case , the reconstruction results under the first-order Born approximation will be seriously distorted . In this paper we introduce an ' intermediate object function' into the wave equation and take iterative modification in space domain and spatial frequancy domain based on Born approximation . In this way , the distorted image will be improved step by step . In order to examine the method as mentioned above , we have just tried to make computerized simulations . The initial result shows that the quality of the image reconstructed from the object under non-weak scattering may be improved significantly .
基金partially supported by the West Light Foundation of the Chinese Academy of Sciences
文摘To simultaneously obtain high-resolution multi-wavelength (from visible to near infrared) tomographic images of the solar atmosphere, a high-performance multi-wavelength optical filter has to be used in solar imaging telescopes. In this Letter, the fabrication of the multi-wavelength filter for solar tomographic imaging is described in detail. For this filter, Ta2O5 and SiO2 are used as high- and low-index materials, respectively, and the multilayer structure is optimized by commercial Optilayer software at a 7.5° angle of incidence. Experimentally, this multi-wavelength optical filter is prepared by a plasma ion-assisted deposition technique with optimized deposition parameters. High transmittance at 393.3, 396.8, 430.5, 525, 532.4, 656.8, 705.8, 854.2, 1083, and 1565.3 nm, as well as high reflectance at 500 and 589 nm are achieved. Excellent environmental durability, demonstrated via temperature and humidity tests, is also established.
基金supported jointly by projects of the National Natural Science Fund Project(No.51174016)the National Key Basic Research and Development Plan 973(No.2010CB226803)
文摘We propose a new method for inverting source function of microseismic event induced in mining. The observed data from microseismic monitoring during mining are represented by a wave equation in a spherical coordinate system and then the data are transformed from the time-space domain to the time-slowness domain based on tomographic principle, from whichwe can obtain the signals related to the source in the time-slowness domain. Through analyzing the relationship between the signal located at the maximum energy and the source function, we derive the tomographic equations to compute the source function from the signals and to calculate the effective radiated energy based on the source function. Moreover, we fit the real amplitude spectrum of the source function computed from the observed data into the co-2 model based on the least squares principle and determine the zero-frequency level spectrum and the corner frequency, finally, the source rupture radius of the event is calculated and The synthetic and field examples demonstrate that the proposed tomographic inversion methods are reliable and efficient
基金support jointly by projects of the National Natural Science Fund Project (40674017 and 50774012)the National Key Basic Research and Development Plan 973 (2010CB226803)
文摘For microseisimic monitoring it is difficult to determine wave modes and their propagation velocity. In this paper, we propose a new method for automatically inverting in real time the source characteristics of microseismic events in mine engineering without wave mode identification and velocities. Based on the wave equation in a spherical coordinate system, we derive a tomographic imaging equation and formulate a scanning parameter selection criterion by which the microseisimic event maximum energy and corresponding parameters can be determined. By determining the maximum energy positions inside a given risk district, we can indentify microseismic events inside or outside the risk districts. The synthetic and field examples demonstrate that the proposed tomographic imaging method can automatically position microseismic events by only knowing the risk district dimensions and range of velocities without identifying the wavefield modes and accurate velocities. Therefore, the new method utilizes the full wavefields to automatically monitor microseismic events.
基金supported by the National Natural Science Foundation of China (10832001 and 10872145)the State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).
基金Project supported by the National Natural Science Foundation of China(Nos.1332006,11272233,11202122,and 11411130150)the National Fundamental Research Program of China(973 Program)(No.2012CB720101)
文摘The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006 and 11272233)the National Key Basic Research and Development Program of China(Grant No.2012CB720101)
文摘The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.
基金supported by the National Natural Science Foundation of China (Grants 11332006,11272233,and 11411130150)the foundation from the China Scholarship Council (CSC) (Grant 201306250092)the Foundation Project for Outstanding Doctoral Dissertations of Tianjin University
文摘Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag.
基金Supported by the National Natural Science Foundation of China(No.11332006No.11272233 and No.11411130150)+2 种基金the Foundation from China Scholarship Council(CSCNo.201306250092)the Foundation Project for Outstanding Doctoral Dissertations of Tianjin University
文摘Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for threedimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light intensity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding reconstruction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image reconstruction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computational analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.
基金supported by American Heart Association,No.18AJML34280074.
文摘The state-of-the-art approaches for image reconstruction using under-sampled k-space data are compressed sensing based.They are iterative algorithms that optimize objective functions with spatial and/or temporal constraints.This paper proposes a non-iterative algorithm to estimate the un-measured data and then to reconstruct the image with the efficient filtered backprojection algorithm.The feasibility of the proposed method is demonstrated with a patient magnetic resonance imaging study.The proposed method is also compared with the state-of-the-art iterative compressed-sensing image reconstruction method using the total-variation optimization norm.
基金supported by the National Natural Science Foundation of China(Nos.12232002,12072017,12002199,and 11721202)。
文摘Three-Dimensional(3D)swirling flow structures,generated by a counter-rotating dualstage swirler in a confined chamber with a confinement ratio of 1.53,were experimentally investigated at Re=2.3×10^(5)using Tomographic Particle Image Velocimetry(Tomo-PIV)and planar Particle Image Velocimetry(PIV).Based on the analysis of the 3D time-averaged swirling flow structures and 3D Proper Orthogonal Decomposition(POD)of the Tomo-PIV data,typical coherent flow structures,including the Corner Recirculation Zone(CRZ),Central Recirculation Zone(CTRZ),and Lip Recirculation Zone(LRZ),were extracted.The counter-rotating dual-stage swirler with a Venturi flare generates the independence process of vortex breakdown from the main stage and pilot stage,leading to the formation of an LRZ and a smaller CTRZ near the nozzle outlet.The confinement squeezes the CRZ to the corner and causes a reverse rotation flow to limit the shape of the CTRZ.A large-scale flow structure caused by the main stage features an explosive breakup,flapping,and Precessing Vortex Core(PVC).The explosive breakup mode dominates the swirling flow structures owing to the expansion and construction of the main jet,whereas the flapping mode is related to the wake perturbation.Confinement limits the expansion of PVC and causes it to contract after the impacting area.
基金the foundation of National Natural Science Foundation of China(No.52376163)National Key Laboratory of Science and Technology on Aerodynamic Design and Research(No.614220121050327).
文摘The development of deep learning has inspired some new methods to solve the 3D reconstruction problem for Tomographic Particle Image Velocimetry (Tomo-PIV). However, the supervised learning method requires a large number of data with ground truth as training information, which is very difficult to gather from experiments. Although synthetic datasets can be used as alternatives, they are still not exactly the same with the real-world experimental data. In this paper, an Unsupervised Reconstruction Technique based on U-net (UnRTU) is proposed to reconstruct volume particle distribution explicitly. Instead of using ground truth data, a projection function is used as an unsupervised loss function for network training to reconstruct particle distribution. The UnRTU was compared with some traditional algebraic reconstruction algorithms and supervised learning method using synthetic data under different particle density and noise level. The results indicate that UnRTU outperforms these traditional approaches in both reconstruction quality and noise robustness, and is comparable to the supervised learning methods AI-PR. For experimental tests, particles dispersed in cured epoxy resin are moved by an electric rail with a certain speed to obtain the ground truth data of particle velocity. Compared with other algorithms, the reconstructed particle distribution by UnRTU has the best reconstruction fidelity. And the accuracy of the 3D velocity field estimated by UnRTU is 12.9% higher than that from the traditional MLOS-MART algorithm. It demonstrates significant potential and advantages for UnRTU in 3D reconstruction of particle distribution. Finally, UnRTU was successfully applied to the high-speed planar cascade airflow field, demonstrating its applicability for measuring complex fluid flow fields at higher particle density.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20210227).
文摘A large field of view is in high demand for disease diagnosis in clinical applications of optical coherence tomography(OCT)and OCT angiography(OCTA)imaging.Due to limits on the optical scanning range,the scanning speed,or the data processing speed,only a relatively small region could be acquired and processed for most of the current clinical OCT systems at one time and could generate a mosaic image of multiple adjacent small-region images with registration algorithms for disease analysis.In this work,we investigated performing cross-correlation(instead of phase-correlation)in the workflow of the Fourier–Mellin transform(FMT)method(called dual-cross-correlation-based translation and rotation registration,DCCTRR)for calculating translation and orientation offsets and compared its performance to the FMT method used on OCTA images alignment.Both phantom and in vivo experiments were implemented for comparisons,and the results quantitatively demonstrate that DCCTRR can align OCTA images with a lower overlap rate,which could improve the scanning efficiency of large-scale imaging in clinical applications.
文摘This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of preexisting basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.
基金supported financially by the National Natural Science Foundation of China(Grants 49672156 and 49872079)awarded to Sao Ji’anthe National High Technology Research and Development Project(863-820-01-04)awarded to Liu Futian.
文摘High-resolution tomographic images of the belt crossing the Japan Trench-Changbai Mountains-Dong Ujimqin Qi are represented in this paper, revealing the shape of a subducted slab in the western Pacific region and characteristics of the lithospheric structures under the Changbai Mountains and the Da Hinggan Mountains. Studies of the spatial distribution, subduction time and the time-lag between the subduction and magmatism, combined with petrology and isotope geochemistry of the Late Mesozoic volcano-plutonic rocks from the Da Hinggan Mountains-Yanshan Mountains have further proved the independence of magmatic activities from the subduction of the Pacific plate. The Mesozoic tectono-thermal evolutionary history and structural characteristics of the lithosphere in the Da Hinggan Mountains and North China suggest that the formation and evolution of magma have probably a close relationship with the delamination and thinning of the continental lithosphere and the underplating resulting from the consequent upwelling of the asthenosphere. On the other hand, the large-scale strike-slip fault system, resulting from sinistral shearing of the Pacific plate relative to the Asian continent in the Mesozoic, is responsible for the formation and emplacement of magma on the continental margin. It was the intense crust-mantle interaction, together with structural deformation at the shallower levels that led to the large tectono-magmatic belt in the East Asian continental margin.
基金supported by Shanghai Sheshan National Geophysical Observatory(Grant No.2020k07)the Chinese Geological Survey(Grant Nos.DD20190448,DD20190370)+1 种基金the National Natural Science Foundation of China(Grant Nos.41374101,42174172)the National Key Research and Development Program of China(Grant No.2019YFA0708601)。
文摘The 3D P-wave velocity structure beneath the South China Block was determined by applying arrival times from 269 teleseismic events recorded by 240 seismic stations within the study region. Our tomographic results reveal the deep structural characteristics of major tectonic units and ore concentration areas. There are distinct high velocity anomalies beneath the ancient Yangtze and Cathaysia blocks, with the lithosphere of the Cathaysia Block being thinner than the Yangtze Block;the Jiangnan orogenic belt, located in the combined zone of two blocks, is a high and low velocity anomaly conversion zone;the famous metallogenic belts of Edongnan, the Youjiang Basin and the Cathaysia Block are obviously low velocity areas with different metallogenic mechanisms. The deep ore-forming material source in the Edongnan metallogenic belt is different from that of the Cathaysia Block. The low velocity anomaly under the Cathaysia Block related to mineralization results from the upwelling of mantle material, caused by the joint action of the Paleo-Tethys tectonic domain, the Paleo-Pacific tectonic domain and the Hainan mantle plume migration and erosion, which has been occurring from northeast to southwest since 80 Ma. The low-temperature mineralization mechanism of Youjiang Basin should be considered not only in terms of the influence of the Emeishan mantle plume in the west and the Paleo-Tethys tectonic domain in the south, but also in the context of the influence of the upwelling of asthenospheric material from the PaleoPacific tectonic domain in the east.
基金supported by the National Natural Science Foundation of China(11332006 and 11272233)the National Key Basic Research Program(2012CB720101)+1 种基金Tianjin University Research and Innovation Foundationthe opening subjects of The State Key Laboratory of Nonlinear Mechanics(LNM),Institute of Mechanics,Chinese Academy of Sciences
文摘The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remains valid.
基金the National Natural Science Foundation of China(No.51376119)
文摘Compared with port fuel injection engines, direct injection(DI) gasoline engine is becoming the mainstream of gasoline engines because of its higher fuel economy and excellent transient response. It has been proven that fuel spray characteristics in DI engines are crucial to the performance and emission quality of the engine. Flash boiling spray has great potential to achieve high fuel economy and low emission by dramatically improving the fuel atomization and vaporization and it has different spray-air interaction behavior as compared with non-flash boiling one, while its mechanism is more complex as compared with subcooled spray. We investigate the time-resolved spatial velocity field of the spray using 2-camera high-speed 3 D3 C(3-dimension 3-component)tomographic particle image velocimetry(PIV) diagnostic technique. A 10 mm thick laser sheet is used to illuminate the fuel spray. Characteristics of both non-flash and flash boiling sprays are studied. A single-hole injector is mounted within a heat exchanger so that different fuel temperature can be accessed. In the experiment, n-pentane is used as the fuel. For the non-flash boiling spray, the velocity field of the liquid spray is mostly consistent to the injection direction. With the increase of the degree of superheat(Do S), the overall velocity scale decreases especially at the spray tip. Meanwhile, larger swirls occur at the lower part of the flash boiling spray, which means stronger spray-air interaction occurs at a higher Do S.