The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
The occurrence of microseismic is not random but is related to the physical properties of the underground medium.Due to the low intensity and the influence of noise,microseismic eventually lead to poor signal-to-noise...The occurrence of microseismic is not random but is related to the physical properties of the underground medium.Due to the low intensity and the influence of noise,microseismic eventually lead to poor signal-to-noise ratio.We proposed a method for automatic detection of microseismic events by adoption of multiscale top-hat transformation.The method is based on the difference between the signal and noise in the multiscale top-hat transform section and achieves the detection on a specific section.The microseismic data are decomposed into different scales by multiscale morphology top-hat transformation firstly.Then the potential microseismic events could be detected by picking up the peak value in the multiscale top-hat section,and the characteristic profile obtains the start point with a specific threshold value.Finally,the synthetic data experiences demonstrate the advantages of this method under strong and weak noisy conditions,and the filed data example also shows its reliability and adaptability.展开更多
This paper proposes a novel ship wake detection algorithm based on the White Top-hat Transform(WTHT)and the Radon transform,which aims to improve the contrast between the ship wake and the background so as to improve ...This paper proposes a novel ship wake detection algorithm based on the White Top-hat Transform(WTHT)and the Radon transform,which aims to improve the contrast between the ship wake and the background so as to improve the detection performance on Synthetic Aperture Radar(SAR)images.The proposed algorithm includes two major processes,and one is to improve the contrast and another one is to locate the ship wake.In high sea state conditions,the contrast of ship wake and background can be very low,which makes it difficult to detect.In the first step,the proposed contrast improvement algorithm is applied to improving the contrast which helps for improving the detection performance.An attribute filter based on edge detection result is adopted here.In the second step the contrast improved image is transformed into the Radon domain followed by peak extraction process to find the wake,the WTHT is used once more in this step.Finally,in the last step,the wake is overlapped on the original image.Experimental results on Tiangong-2 Interferometric Imaging Radar Altimeter(InIRA)images are presented and compared with that obtained by using the classical algorithm,and in this way,the better performance of our algorithm is demonstrated.展开更多
Medical imaging includes different modalities and processes to visualize the interior of human body for diagnostic and treatment purpose. However, one of the most common degradations in medical images is their poor co...Medical imaging includes different modalities and processes to visualize the interior of human body for diagnostic and treatment purpose. However, one of the most common degradations in medical images is their poor contrast quality and noise. The existence of several objects and the close proximity of adjacent pixels values make the diagnostic process a daunting task. The idea of image enhancement techniques is to improve the quality of an image. In this study, morphological transform operation is carried out on medical images to enhance the contrast and quality. A disk shaped mask is used in Top-Hat and Bottom-Hat transform and this mask plays a vital role in the operation. Different types and sizes of medical images need different masks so that they can be successfully enhanced. The method shown in this study takes a mask of an arbitrary size and keeps changing its size until an optimum enhanced image is obtained from the transformation operation. The enhancement is achieved via an iterative exfoliation process. The results indicate that this method improves the contrast of medical images and can help with better diagnosis.展开更多
Lane detection based on machine vision,a key application in intelligent transportation,is generally characterized by gradient information of lane edge and plays an important role in advanced driver assistance systems(...Lane detection based on machine vision,a key application in intelligent transportation,is generally characterized by gradient information of lane edge and plays an important role in advanced driver assistance systems(ADAS).However,gradient information varies with illumination changes.In the complex scenes of urban roads,highlight and shadow have effects on the detection,and non-lane objects also lead to false positives.In order to improve the accuracy of detection and meet the robustness requirement,this paper proposes a method of using top-hat transformation to enhance the contrast and filter out the interference of non-lane objects.And then the threshold segmentation algorithm based on local statistical information and Hough transform algorithm with polar angle and distance constraint are used for lane fitting.Finally,Kalman filter is used to correct lane lines which are wrong detected or missed.The experimental results show that computation times meet the real-time requirements,and the overall detection rate of the proposed method is 95.63%.展开更多
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi...The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
基金supported in part by the National Natural Science Foundation of China under Grant 41904098Fundamental Research Funds for the Central Universities,under Grant 2462018YJRC020 and Grant 2462020YXZZ006。
文摘The occurrence of microseismic is not random but is related to the physical properties of the underground medium.Due to the low intensity and the influence of noise,microseismic eventually lead to poor signal-to-noise ratio.We proposed a method for automatic detection of microseismic events by adoption of multiscale top-hat transformation.The method is based on the difference between the signal and noise in the multiscale top-hat transform section and achieves the detection on a specific section.The microseismic data are decomposed into different scales by multiscale morphology top-hat transformation firstly.Then the potential microseismic events could be detected by picking up the peak value in the multiscale top-hat section,and the characteristic profile obtains the start point with a specific threshold value.Finally,the synthetic data experiences demonstrate the advantages of this method under strong and weak noisy conditions,and the filed data example also shows its reliability and adaptability.
基金Supported by National Key R&D Program of China(2016YFC1401004)along with China Manned Space Program。
文摘This paper proposes a novel ship wake detection algorithm based on the White Top-hat Transform(WTHT)and the Radon transform,which aims to improve the contrast between the ship wake and the background so as to improve the detection performance on Synthetic Aperture Radar(SAR)images.The proposed algorithm includes two major processes,and one is to improve the contrast and another one is to locate the ship wake.In high sea state conditions,the contrast of ship wake and background can be very low,which makes it difficult to detect.In the first step,the proposed contrast improvement algorithm is applied to improving the contrast which helps for improving the detection performance.An attribute filter based on edge detection result is adopted here.In the second step the contrast improved image is transformed into the Radon domain followed by peak extraction process to find the wake,the WTHT is used once more in this step.Finally,in the last step,the wake is overlapped on the original image.Experimental results on Tiangong-2 Interferometric Imaging Radar Altimeter(InIRA)images are presented and compared with that obtained by using the classical algorithm,and in this way,the better performance of our algorithm is demonstrated.
文摘Medical imaging includes different modalities and processes to visualize the interior of human body for diagnostic and treatment purpose. However, one of the most common degradations in medical images is their poor contrast quality and noise. The existence of several objects and the close proximity of adjacent pixels values make the diagnostic process a daunting task. The idea of image enhancement techniques is to improve the quality of an image. In this study, morphological transform operation is carried out on medical images to enhance the contrast and quality. A disk shaped mask is used in Top-Hat and Bottom-Hat transform and this mask plays a vital role in the operation. Different types and sizes of medical images need different masks so that they can be successfully enhanced. The method shown in this study takes a mask of an arbitrary size and keeps changing its size until an optimum enhanced image is obtained from the transformation operation. The enhancement is achieved via an iterative exfoliation process. The results indicate that this method improves the contrast of medical images and can help with better diagnosis.
文摘Lane detection based on machine vision,a key application in intelligent transportation,is generally characterized by gradient information of lane edge and plays an important role in advanced driver assistance systems(ADAS).However,gradient information varies with illumination changes.In the complex scenes of urban roads,highlight and shadow have effects on the detection,and non-lane objects also lead to false positives.In order to improve the accuracy of detection and meet the robustness requirement,this paper proposes a method of using top-hat transformation to enhance the contrast and filter out the interference of non-lane objects.And then the threshold segmentation algorithm based on local statistical information and Hough transform algorithm with polar angle and distance constraint are used for lane fitting.Finally,Kalman filter is used to correct lane lines which are wrong detected or missed.The experimental results show that computation times meet the real-time requirements,and the overall detection rate of the proposed method is 95.63%.
基金Project(51171209)supported by the National Natural Science Foundation of China
文摘The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.