Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier ...Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model,is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous localitybased method without noticeable deterioration in processing time,adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching(TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.展开更多
We consider the generalized flocking problem in multiagent systems, where the agents must drive a subset of their state variables to common values, while communication is constrained by a proximity relationship in ter...We consider the generalized flocking problem in multiagent systems, where the agents must drive a subset of their state variables to common values, while communication is constrained by a proximity relationship in terms of another subset of variables. We build a flocking method for general nonlinear agent dynamics, by using at each agent a near-optimal control technique from artificial intelligence called optimistic planning. By defining the rewards to be optimized in a well-chosen way, the preservation of the interconnection topology is guaranteed, under a controllability assumption. We also give a practical variant of the algorithm that does not require to know the details of this assumption, and show that it works well in experiments on nonlinear agents.展开更多
基金supported by the National Natural Science Foundation of China (62276192)。
文摘Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model,is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous localitybased method without noticeable deterioration in processing time,adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching(TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.
基金supported by a Programme Hubert Curien-Brancusi cooperation grant(CNCS-UEFISCDI contract no.781/2014 and Campus France grant no.32610SE)supported by the Romanian National Authority for Scientific Research,CNCS-UEFISCDI(No.PNII-RU-TE-2012-3-0040)funded by the National Research Agency(ANR)project"Computation Aware Control Systems"(No.ANR-13-BS03-004-02)
文摘We consider the generalized flocking problem in multiagent systems, where the agents must drive a subset of their state variables to common values, while communication is constrained by a proximity relationship in terms of another subset of variables. We build a flocking method for general nonlinear agent dynamics, by using at each agent a near-optimal control technique from artificial intelligence called optimistic planning. By defining the rewards to be optimized in a well-chosen way, the preservation of the interconnection topology is guaranteed, under a controllability assumption. We also give a practical variant of the algorithm that does not require to know the details of this assumption, and show that it works well in experiments on nonlinear agents.