Due to the complicated three-dimensional behaviors and testing limitations of reinforced concrete(RC)members in torsion,torsional mechanism exploration and torsional performance prediction have always been difficult.I...Due to the complicated three-dimensional behaviors and testing limitations of reinforced concrete(RC)members in torsion,torsional mechanism exploration and torsional performance prediction have always been difficult.In the present paper,several machine learning models were applied to predict the torsional capacity of RC members.Experimental results of a total of 287 torsional specimens were collected through an overall literature review.Algorithms of extreme gradient boosting machine(XGBM),random forest regression,back propagation artificial neural network and support vector machine,were trained and tested by 10-fold cross-validation method.Predictive performances of proposed machine learning models were evaluated and compared,both with each other and with the calculated results of existing design codes,i.e.,GB 50010,ACI 318-19,and Eurocode 2.The results demonstrated that better predictive performance was achieved by machine learning models,whereas GB 50010 slightly overestimated the torsional capacity,and ACI 318-19 and Eurocode 2 underestimated it,especially in the case of ACI 318-19.The XGBM model gave the most favorable predictions with R^(2)=0.999,RMSE=1.386,MAE=0.86,andλ=0.976.Moreover,strength of concrete was the most sensitive input parameters affecting the reliability of the predictive model,followed by transverse-to-longitudinal reinforcement ratio and total reinforcement ratio.展开更多
基金The authors are extremely grateful to the funds including the National Natural Science Foundation of China(Grant No.51808258)the Fundamental Research Funds for the Central Universities(No.2022QN1031).
文摘Due to the complicated three-dimensional behaviors and testing limitations of reinforced concrete(RC)members in torsion,torsional mechanism exploration and torsional performance prediction have always been difficult.In the present paper,several machine learning models were applied to predict the torsional capacity of RC members.Experimental results of a total of 287 torsional specimens were collected through an overall literature review.Algorithms of extreme gradient boosting machine(XGBM),random forest regression,back propagation artificial neural network and support vector machine,were trained and tested by 10-fold cross-validation method.Predictive performances of proposed machine learning models were evaluated and compared,both with each other and with the calculated results of existing design codes,i.e.,GB 50010,ACI 318-19,and Eurocode 2.The results demonstrated that better predictive performance was achieved by machine learning models,whereas GB 50010 slightly overestimated the torsional capacity,and ACI 318-19 and Eurocode 2 underestimated it,especially in the case of ACI 318-19.The XGBM model gave the most favorable predictions with R^(2)=0.999,RMSE=1.386,MAE=0.86,andλ=0.976.Moreover,strength of concrete was the most sensitive input parameters affecting the reliability of the predictive model,followed by transverse-to-longitudinal reinforcement ratio and total reinforcement ratio.