Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behavio...Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).展开更多
The commercial finite element package ANSYSTM was utilized for prediction of temperature distribution during reheating treatment of hot torsion test (HTT) samples with different geometries for API-X70 microalloyed s...The commercial finite element package ANSYSTM was utilized for prediction of temperature distribution during reheating treatment of hot torsion test (HTT) samples with different geometries for API-X70 microalloyed steel. Simulation results show that an inappropriate choice of test specimen geometry and reheating conditions before deformation could lead to non-uniform temperature distribution within the gauge section of specimen. Therefore, assumptions of isothermal experimental conditions and zero temperature gradient within the specimen cross section appear unjustified and led to uncertainties of flow curve obtained. Recommendations on finding proper specimen geometry for reducing temperature gradient along the gauge part of specimen will be given to create homogeneous initial microstructure as much as possible before deformation in order to avoid uncertainty in consequent results of HTT.展开更多
饱和粉土在地震作用下会发生液化变形,从而导致建立在其上的建(构)筑物发生破坏。工程场地区域内粉土单元通常存在初始剪应力作用,为探究初始剪应力对饱和粉土液化特性的影响,将液化后粉土视为流体进行了一系列循环扭剪试验研究。试验...饱和粉土在地震作用下会发生液化变形,从而导致建立在其上的建(构)筑物发生破坏。工程场地区域内粉土单元通常存在初始剪应力作用,为探究初始剪应力对饱和粉土液化特性的影响,将液化后粉土视为流体进行了一系列循环扭剪试验研究。试验结果表明,初始剪应力对饱和粉土剪应力-剪应变率曲线影响显著,随着初始剪应力τ_(s)的增大,剪应力-剪应变率曲线由“椭圆形”向“哑铃形”过渡逐渐转变为由“镰刀形”向“椭圆形”至“锤形”过渡;表观黏度η与振次N的衰减曲线随着τ_(s)的增大先降低再抬升,平均流动系数κ与振次N的增长曲线发展速度随着τ_(s)的增大先加快后减慢,固液相变孔压比r_(uth)随着τ_(s)的增大先减小后增大,当τ_(s)=5 k Pa时饱和粉土的r_(uth)最小。展开更多
The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on sub...The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on subcritical crack growth. With water-rock interaction, the crack velocity increases, while the stress intensity factor declines, which illustrates that water-rock interaction can decrease the strength of rocks and accelerate the subcritical crack growth. Based on Charlse theory and Hilling & Charlse theory, the test data were analyzed by regression and the correlation coefficients were all higher than 0.7, which shows the correlation is significant. This illustrates that both theories can explain the results of tests very well. Therefore, it is believed that the subcritical crack growth attributes to the breaking of chemical bond, which is caused by the combined effect of the tensile stress and the chemical reaction between the material at crack tip and the corrosive agent. Meanwhile, water-rock interaction has a vital effect on fracture toughness. The fracture toughness of samples under atmospheric environment is higher than that of samples immersed in water. And water-rock interaction has larger influence on fracture toughness in amphibolite than that in peridotite and lherzolite.展开更多
为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(...为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(socket with ultra-high performance concrete,SU)和结合套筒连接钢筋的新型承插(grouting sleeve and socket with ultra-high performance concrete,GSU)连接拼装桥墩的损伤机理和滞回性能,结合有限元模型重点讨论了承插口深度对滞回性能的影响。结果表明:4个构件的破坏模式都是以受弯破坏为主的弯扭破坏,其中SU构件出现了轻微拔起的现象,而对应的GSU构件并未出现该现象,与RC构件接近;各构件的剪力-墩顶位移骨架发展趋势比较一致,由于GSU构件纵向钢筋连续,具有更好的整体性能,其抗弯承载力与RC构件接近,且明显大于SU和GS构件,4个构件弯曲滞回耗能较为接近;承插口深度为1.0倍截面宽度的GSU构件抗扭承载力略高于RC构件,且明显大于其余装配式墩,GSU构件的扭转刚度、延性系数和耗能能力均大于其他3个墩;当承插口深度采用0.5倍构件截面宽度时,新型承插GSU构件的抗弯和抗扭承载力均略高于整体现浇构件,具有良好的抵抗压弯扭荷载的能力,可以实现浅承插口连接。研究结果可为压弯扭复合作用下装配式墩的应用提供试验依据。展开更多
基金partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1005726)Technology development Program (No. RS-2023-00220823) funded by the Ministry of SMEs and Startups (MSS, Korea)+1 种基金the Electronics Technology Development Project (No. 20026289) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)partly supported by the research grant of the Kongju National University in 2022
文摘Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX).
文摘The commercial finite element package ANSYSTM was utilized for prediction of temperature distribution during reheating treatment of hot torsion test (HTT) samples with different geometries for API-X70 microalloyed steel. Simulation results show that an inappropriate choice of test specimen geometry and reheating conditions before deformation could lead to non-uniform temperature distribution within the gauge section of specimen. Therefore, assumptions of isothermal experimental conditions and zero temperature gradient within the specimen cross section appear unjustified and led to uncertainties of flow curve obtained. Recommendations on finding proper specimen geometry for reducing temperature gradient along the gauge part of specimen will be given to create homogeneous initial microstructure as much as possible before deformation in order to avoid uncertainty in consequent results of HTT.
文摘饱和粉土在地震作用下会发生液化变形,从而导致建立在其上的建(构)筑物发生破坏。工程场地区域内粉土单元通常存在初始剪应力作用,为探究初始剪应力对饱和粉土液化特性的影响,将液化后粉土视为流体进行了一系列循环扭剪试验研究。试验结果表明,初始剪应力对饱和粉土剪应力-剪应变率曲线影响显著,随着初始剪应力τ_(s)的增大,剪应力-剪应变率曲线由“椭圆形”向“哑铃形”过渡逐渐转变为由“镰刀形”向“椭圆形”至“锤形”过渡;表观黏度η与振次N的衰减曲线随着τ_(s)的增大先降低再抬升,平均流动系数κ与振次N的增长曲线发展速度随着τ_(s)的增大先加快后减慢,固液相变孔压比r_(uth)随着τ_(s)的增大先减小后增大,当τ_(s)=5 k Pa时饱和粉土的r_(uth)最小。
基金Project(51374246,51474249)supported by the National Natural Science Foundation of ChinaProject(2013FJ6002)supported by the Science-Technology Project of Science-Technology Department of Hunan Province,China
文摘The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on subcritical crack growth. With water-rock interaction, the crack velocity increases, while the stress intensity factor declines, which illustrates that water-rock interaction can decrease the strength of rocks and accelerate the subcritical crack growth. Based on Charlse theory and Hilling & Charlse theory, the test data were analyzed by regression and the correlation coefficients were all higher than 0.7, which shows the correlation is significant. This illustrates that both theories can explain the results of tests very well. Therefore, it is believed that the subcritical crack growth attributes to the breaking of chemical bond, which is caused by the combined effect of the tensile stress and the chemical reaction between the material at crack tip and the corrosive agent. Meanwhile, water-rock interaction has a vital effect on fracture toughness. The fracture toughness of samples under atmospheric environment is higher than that of samples immersed in water. And water-rock interaction has larger influence on fracture toughness in amphibolite than that in peridotite and lherzolite.
文摘为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(socket with ultra-high performance concrete,SU)和结合套筒连接钢筋的新型承插(grouting sleeve and socket with ultra-high performance concrete,GSU)连接拼装桥墩的损伤机理和滞回性能,结合有限元模型重点讨论了承插口深度对滞回性能的影响。结果表明:4个构件的破坏模式都是以受弯破坏为主的弯扭破坏,其中SU构件出现了轻微拔起的现象,而对应的GSU构件并未出现该现象,与RC构件接近;各构件的剪力-墩顶位移骨架发展趋势比较一致,由于GSU构件纵向钢筋连续,具有更好的整体性能,其抗弯承载力与RC构件接近,且明显大于SU和GS构件,4个构件弯曲滞回耗能较为接近;承插口深度为1.0倍截面宽度的GSU构件抗扭承载力略高于RC构件,且明显大于其余装配式墩,GSU构件的扭转刚度、延性系数和耗能能力均大于其他3个墩;当承插口深度采用0.5倍构件截面宽度时,新型承插GSU构件的抗弯和抗扭承载力均略高于整体现浇构件,具有良好的抵抗压弯扭荷载的能力,可以实现浅承插口连接。研究结果可为压弯扭复合作用下装配式墩的应用提供试验依据。