期刊文献+
共找到1,413篇文章
< 1 2 71 >
每页显示 20 50 100
Total organic carbon content logging prediction based on machine learning:A brief review 被引量:1
1
作者 Linqi Zhu Xueqing Zhou +1 位作者 Weinan Liu Zheng Kong 《Energy Geoscience》 2023年第2期100-107,共8页
The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of o... The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance. 展开更多
关键词 total organic carbon content Well logging Machine learning Backpropagation neural network Support vector regression
下载PDF
Geophysical prediction of organic matter abundance in source rocks based on geochemical analysis:A case study of southwestern Bozhong Sag,Bohai Sea,China
2
作者 Xiang Wang Guang-Di Liu +5 位作者 Xiao-Lin Wang Jin-Feng Ma Zhen-Liang Wang Fei-Long Wang Ze-Zhang Song Chang-Yu Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期31-53,共23页
The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a... The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited. 展开更多
关键词 total organic carbon(toc) Residual hydrocarbon generation potential(S_(2)) Geophysical prediction Seismic attribute Bozhong Sag Bohai Bay Basin
下载PDF
^137Cs tracing dynamics of soil erosion,organic carbon,and total nitrogen in terraced fields and forestland in the Middle Mountains of Nepal 被引量:4
3
作者 SU Zheng-an XIONG Dong-hong +4 位作者 DENG Wei DONG Yi-fan MA Jing PADMA C Poudel GURUNG B Sher 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1829-1839,共11页
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil ... The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137 Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen(TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137 Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2(1 Bq(i.e., one Becquerel) is equal to 1 disintegration per second(1 dps)). For each terrace, the 137 Cs inventory generally increased fromupper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137 Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces(lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatialvariation in soil erosion was similar to the "standard" water erosion model. Soil organic carbon(SOC) and TN inventories showed similar spatial patterns to the 137 Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction(clay sized) and 137 Cs inventories in terraced fields, while different patterns could be found between 137 Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137 Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal. 展开更多
关键词 Nepal 137Cs inventory Soil erosion/deposition Soil organic carbon total nitrogen
下载PDF
Characteristics of soil organic carbon and total nitrogen under various grassland types along a transect in a mountain-basin system in Xinjiang, China 被引量:4
4
作者 BI Xu LI Bo +3 位作者 NAN Bo FAN Yao FU Qi ZHANG Xinshi 《Journal of Arid Land》 SCIE CSCD 2018年第4期612-627,共16页
Soil organic carbon (SOC) and soil total nitrogen (STN) in arid regions are important components of global C and the N cycles, and their response to climate change will have important implications for both ecosyst... Soil organic carbon (SOC) and soil total nitrogen (STN) in arid regions are important components of global C and the N cycles, and their response to climate change will have important implications for both ecosystem processes and global climate feedbacks. Grassland ecosystems of Funyun County in the southern foot of the Altay Mountains are characterized by complex topography, suggesting large variability in the spatial distribution of SOC and STN. However, there has been little investigation of SOC and STN on grasslands in arid regions with a mountain-basin structure. Therefore, we investigated the characteristics of SOC and STN in different grassland types in a mountain-basin system at the southern foot of the Altai Mountains, north of the Junggar Basin in China, and explored their potential influencing factors and relationships with meteorological factors and soil properties. We found that the concentrations and storages of SOC and STN varied significantly with grassland type, and showed a decreasing trend along a decreasing elevation gradient in alpine meadow, mountain meadow, temperate typical steppe, temperate steppe desert, and temperate steppe desert. In addition, the SOC and STN concentrations decreased with depth, except in the temperate desert steppe. According to Pearson's correlation values and redundancy analysis, the mean annual precipitation, soil moisture content and soil available N concentration were significantly positively correlated with the SOC and STN concentrations. In contrast, the mean annual temperature, pH, and soil bulk density were significantly and negatively correlated with the SOC and STN concentrations. The mean annual precipitation and mean annual temperature were the primary factors related to the SOC and STN concentrations. The distributions of the SOC and STN concentrations were highly regulated by the elevation-induced differences in meteorological factors. Mean annual precipitation and mean annual temperature together explained 97.85% and 98.38% of the overall variations in the SOC and STN concentrations, respectively, at soil depth of 0-40 cm, with precipitation making the greatest contribution. Our results provide a basis for estimating and predicting SOC and STN concentrations in grasslands in arid regions with a mountain-basin structure. 展开更多
关键词 mountain-basirl system grassland types soil organic carbon soil total nitrogen meteorological factors soil properties
下载PDF
Characteristics of Soil Organic Carbon, Total Nitrogen, and C/N Ratio in Chinese Apple Orchards 被引量:7
5
作者 Shunfeng Ge Haigang Xu +1 位作者 Mengmeng Ji Yuanmao Jiang 《Open Journal of Soil Science》 2013年第5期213-217,共5页
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb... Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio. 展开更多
关键词 CHINESE APPLE ORCHARD Soil organic carbon total Nitrogen C/N Ratio
下载PDF
Effect of fire intensity on active organic and total soil carbon in a Larix gmelinii forest in the Daxing'anling Mountains,Northeastern China 被引量:2
6
作者 Yunmin Wei Haiqing Hu +3 位作者 Jiabao Sun Qiang Yuan Long Sun Huifeng Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1351-1359,共9页
Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab an... Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing'anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P 〈 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P 〈 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P 〈 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P 〉 0.05). Soil LFOC and POC varied significantly with the seasons (P 〈 0.05) in the Daxing'anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing'anling Mountains. 展开更多
关键词 Forest fire intensity Labile organic carbon.Light fraction organic carbon Particulate organic matter carbon total organic carbon
下载PDF
Effects of Tillage Methods on Soil Organic Carbon and Total Nitrogen Content in the Loess Plateau 被引量:2
7
作者 Tingting MENG 《Asian Agricultural Research》 2020年第2期25-27,共3页
In order to determine whether long-term no-tillage operation in the loess plateau threatens soil fertility and crop yield,a suitable high-yield and efficient tillage technology system was established.In the Changwu lo... In order to determine whether long-term no-tillage operation in the loess plateau threatens soil fertility and crop yield,a suitable high-yield and efficient tillage technology system was established.In the Changwu loess plateau agri-Gecological experiment station of the Northwest A&F University of Changwu County,Shaanxi Province,the no-tillage experimental field for three consecutive years was selected.In September 2015,no-tillage,tillage,and rotary tillage were carried out before winter wheat was sowed.After the harvest of winter wheat in2016,soil organic carbon,total nitrogen and wheat yield in 0-30 cm soil layers under different tillage methods were analyzed.The results showed that the soil organic carbon and total nitrogen contents in the 0-30 cm soil layer decreased along the profile under the three tillage methods.In this study,the soil organic carbon and total nitrogen content in the 0-10 cm soil layer under different tillage methods were no-tillage>rotary tillage>tillage,the actual yield of winter yield in one hectare was tillage>rotary tillage>no-tillage,and there was significant difference in the actual yield of winter wheat only between the no-tillage and tillage. 展开更多
关键词 LOESS PLATEAU Different TILLAGE methods organic carbon total nitrogen WHEAT yield
下载PDF
A brief introduction to recent applications of several sediment-analysis techniques in palaeolimnological studies-dry bulk density and water content, mineral magnetism, carbonate content, and content of total organic carbon,nitrogen content and carbon/ni 被引量:2
8
作者 WANG Hong-ya (Dept. of Urban and Environmental Sciences, Peking University, Beijing 100871, China Geophysical Laboratory, Dot. of Earth Sciences, University of Aarhus, Finlandsgade 8. DK- 8200, Aarhus N, Denmark) 《Journal of Geographical Sciences》 SCIE CSCD 2000年第1期28-36,共9页
Determination of dry bulk density and water content measurement of magnetic susceptibility (x) and saturation isothermal remanent magnetization (SIRM), determination of carbonate content, and determination of total o... Determination of dry bulk density and water content measurement of magnetic susceptibility (x) and saturation isothermal remanent magnetization (SIRM), determination of carbonate content, and determination of total organic carbon (TOC) content nitrogen content (N%) and carbon/nitrogen (C/N) ratio are some of the techniques which have been widely applied to lacustrine-sediment analyses. The techniques,complemented by others, are usually useful for revealing characteristics of lacustrine-sediments and thus for postulating hydrological regimes in the lake and environmental conditions and human activity around it in palaeolimnological studies. A very brief review is presented on recent applications of these techniques in palaeolimnological work with English literatures published mainly since 1985 and focus given on interpretations of results of these analyses related to palaeoenvironmental reconstructions. Low dry bulk density and high water content often imply relatively warm and wet conditions. High X and SIRM are usually resulted from reduced dilutions in the lake and intensified erosions on its catchment. both of which can be in turn attributed to environmental changes. While variations in patterns of X and SIRM may give further insight on mineral magnetism and thus implications on environmental conditions. Increased carbonate content seems likely to associate to warm and dry conditions.Increased TOC content is virtually used as one of indicators of warm and wet conditions and variations in C/N ratio may hint variations in relative contributions of different sources, aquatic and terrestrial, to the total organic matter in lake sediments and hence to lake-level fluctuations and climate changes. 展开更多
关键词 dry bulk density and water content mineral magnetism carbonate content. total organic carbon content nitrogen content carbon/nitrogen ratio
下载PDF
An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores 被引量:1
9
作者 徐小明 祝青 +3 位作者 周芊至 刘金钟 袁建平 王江海 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第1期105-113,共9页
Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse ef fects on human activities.Organic carbon in marine sediments is an indispensable part of the globa... Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse ef fects on human activities.Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling.Evaluating such a reservoir calls for quantitative studies of marine carbon burial,which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences.However,the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties,i.e.,(1)a very limited amount of each subsample versus the diverse analytical items,(2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data,and(3)a large number of subsamples versus the rapid batch measurements.In this work,(i)adopting the customized disposable ceramic crucibles with the microporecontrolled ability,(ii)developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization,and(iii)optimizing procedures and carbon-sulfur analyzer,we have built a novel Wang-Xu-Yuan method(the WXY method)for measuring the contents of total organic carbon or black carbon in marine sediment cores,which includes the procedures of pretreatment,weighing,acidification,chemothermal oxidation and quantification;and can fully meet the requirements of establishing their highresolution temporal sequences,whatever in the recovery,experimental efficiency,accuracy and reliability of the measurements,and homogeneity of samples.In particular,the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario,which further results in the very high recovery rates for total organic carbon and black carbon.This new technique may provide a significant support for revealing the mechanism of carbon burial and evaluating the capacity of marine carbon accumulation and sequestration. 展开更多
关键词 total organic carbon black carbon marine sediment cores chemothermal oxidation disposable ceramic crucible
下载PDF
Effects of degradation succession of alpine wetland on soil organic carbon and total nitrogen in the Yellow River source zone,west China 被引量:2
10
作者 LIN Chun-ying LI Xi-lai +8 位作者 ZHANG Jing SUN Hua-fang ZHANG Juan HAN Hui-bang WANG Qi-hua MA Cheng-biao LI Cheng-yi ZHANG Yu-xing MA Xue-qian 《Journal of Mountain Science》 SCIE CSCD 2021年第3期694-705,共12页
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)an... Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland. 展开更多
关键词 Degradation succession Soil organic carbon(SOC) total nitrogen(TN) Soil water content(SWC) MICROTOPOGRAPHY Soil depth
下载PDF
Total Organic Carbon Enrichment and Source Rock Evaluation of the Lower Miocene Rocks Based on Well Logs: October Oil Field, Gulf of Suez-Egypt 被引量:1
11
作者 Aref Lashin Saad Mogren 《International Journal of Geosciences》 2012年第4期683-695,共13页
October oil field is one of the largest hydrocarbon-bearing fields which produces oil from the sand section of the Lower Miocene Asl Formation. Two marl (Asl Marl) and shale (Hawara Formation) sections of possible sou... October oil field is one of the largest hydrocarbon-bearing fields which produces oil from the sand section of the Lower Miocene Asl Formation. Two marl (Asl Marl) and shale (Hawara Formation) sections of possible source enrichment are detected above and below this oil sand section, respectively. This study aims to identify the content of the total organic carbon based on the density log and a combination technique of the resistivity and porosity logs (Δlog R Technique). The available geochemical analyses are used to calibrate the constants of the TOC and the level of maturity (LOM) used in the (Δlog R Technique). The geochemical-based LOM is found as 9.0 and the calibrated constants of the Asl Marl and Hawara Formation are found as 11.68, 3.88 and 8.77, 2.80, respectively. Fair to good TOC% content values (0.88 to 1.85) were recorded for Asl Marl section in the majority of the studied wells, while less than 0.5% is recorded for the Hawara Formation. The lateral distribution maps show that most of the TOC% enrichments are concentrated at central and eastern parts of the study area, providing a good source for the hydrocarbons encountered in the underlying Asl Sand section. 展开更多
关键词 total organic carbon Source ROCKS WELL LOGS October Oil Field GULF of Suez
下载PDF
Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems 被引量:1
12
作者 Maruf Kajogbola Adebayo Adeboye Abdullahi Bala +3 位作者 Akim Oserhien Osunde Anthony Ozoemenam Uzoma Ayo Joshua Odofin Baba Abubakar Lawal 《Agricultural Sciences》 2011年第1期34-40,共7页
Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivati... Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivation, locally irri-gated and non-irrigated, forestry plantations of teak (Tectona grandis Lin.) and gmelina (Gme- lina arborea Roxb.), and cashew (Anacardium occidentale Lin.) plantation agro ecosystems using soil organic carbon (SOC), soil total ni-trogen (STN) and soil microbial biomass C (SMBC) and N (SMBN) at Minna in the southern Guinea savanna of Nigeria. Soil samples were collected from soil depths of 0-5 cm and 5-10 cm in all the agro ecosystems and analyzed for physical, chemical and biological properties. All the agro ecosystems had similar loamy soil texture at both depths. The soils have high fer-tility status in terms of available phosphorus and exchangeable calcium, magnesium and po- tassium. The irrigated arable land had significantly (P 6.6 suggesting fungal domination in all the agroecosystems. The forestry plantation soils had higher SMBC and SMBN as a per-centage of SOC and STN respectively than the cultivated arable land soils. Burning for clearing vegetation and poor stocking of forestry planta-tions may impair the quality of the soil. The study suggests that the locally irrigated agro- ecosystem soil seems to be of better quality than the other agroecosystem soils. 展开更多
关键词 AGROECOSYSTEMS MICROBIAL BIOMASS SOIL organic carbon SOIL total Nitrogen TROPICAL
下载PDF
Characteristics of soil organic carbon andtotal nitrogen storages for differentland-use types in Central Yunnan Plateau 被引量:1
13
作者 SHEN Fangyuan TUO Yunfei +4 位作者 WANG Qian WANG Fei ZHENG Yang DU Wenjuan XIANG Ping 《排灌机械工程学报》 CSCD 北大核心 2022年第5期519-528,共10页
Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunh... Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunhe watershed of Jinning District,Kunming City,Yunnan Province,China.The effects of the soil organic carbon,total nitrogen stratification ratio,soil physical and chemical factors on the storage characteristics of organic carbon and total nitrogen of different land-use types were analyzed.The results show that the rates of carbon and nitrogen stratification in soil from 0-20 cm and 40-60 cm of the same land-use types differed are statistically significant(P<0.05).The organic carbon and total nitrogen stratification ratio SR1 of garden land soil are 38.5%and 25.3%,respectively,which are higher than SR^(2).The soil organic carbon and total nitrogen stratification ratio SR^(2) of different land-use types are greater than SR1.There are statistically significant differences in the SR^(2) soil organic carbon and total nitrogen stratification ratios(P<0.05).Soil organic carbon and total nitrogen storage of diffe-rent land-use types gradually decrease with increasing soil depth,with the maximum soil organic carbon and total nitrogen storage in the 0-20 cm soil layer.Soil organic carbon and total nitrogen sto-rage at the same soil depth are significantly different(P<0.05).Soil organic carbon and total nitrogen storage in the garden land are greater than those in the other land-use types.Soil organic carbon and total nitrogen storage in 0-20 cm garden land are 4.96 and 3.19 times than those in bare land,respectively;soil organic carbon and total nitrogen storage are explained by 93.66%and 1.53%in redundancy analysis RDA1 and RDA2,respectively.All physicochemical factors except Available Phosphorus and pH are statistically significance with carbon and nitrogen storage(P<0.05).Soil cationic exchange capacity,Available Phosphorus,C/N ratio,and Moisture Content are positively correlated with organic carbon and total nitrogen storage.In contrast,soil Bulk Density is negatively correlated with organic carbon storage and total nitrogen storage.Available Phosphorus,C/N ratio,and Moisture Content are the main factors promoting soil organic carbon and total nitrogen accumulation. 展开更多
关键词 soil organic carbon storage soil total nitrogen storage stratification ratio land-use types Central Yunnan Plateau
下载PDF
Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:33
14
作者 YANG Zeng-ping ZHENG Sheng-xian +2 位作者 NIE Jun LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第8期1772-1781,共10页
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie... In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases. 展开更多
关键词 green manure organic carbon reddish paddy soil total nitrogen water-stable aggregates
下载PDF
Distribution of organic carbon in sediments and its influences on adjacent sea area in the turbidity maximum of Changjiang Estuary in China 被引量:7
15
作者 GAO Jianhua WANG Yaping +3 位作者 PAN Shaoming ZHANG Rui LI Jun BAI Fenglong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第4期83-94,共12页
Distributions and sources of total organic carbon (TOC)in seabed sediments and their implications for hydrodynamics are analyzed, in the turbidity maximum of the Changjiang Estuary. Ecology ecoenvironmental effects ... Distributions and sources of total organic carbon (TOC)in seabed sediments and their implications for hydrodynamics are analyzed, in the turbidity maximum of the Changjiang Estuary. Ecology ecoenvironmental effects of estuary water on the continuously increasing terrigenous organic carbon from the Changjiang River are also explored through variations of organic carbon content and water quality indicators. Results show that, hydrodynamics exert important influences on distributions of organic carbon in the tur- bidity maximum of Changjiang Estuary. For their redistribution effect of terrigenous organic carbon within the moving layer in the whole region, variations from land to sea are not indicated by surficial and vertical average values of TOC and total nitrogen (TN) contents in core sediment, as well as organic stable carbon isotopes in surface sediments. However, on the long-time scale, the trend of terrigenous organic carbon decreasing from land to sea is still displayed by variations of stable carbon isotopic average values becoming heavier from land to sea. Previous studies have shown that high content of Chl a cannot appear in the Changjiang Estuary in despite of adequate nourishment supply, because photosynthesis of phytoplankton is constrained by high suspended sediment concentration(SSC). However, an area with a high content of Chl a occurs, which may be caused by resuspended benthic algae with bottom fine grain-size sediments. Tremendous pressures are imposed on the environment of Changjiang Estuary, because of uhrophication trends and special hydrodynamics. Phytoplankton bloom area tends to extend from the outer sea to the mouth of Changjiang River. 展开更多
关键词 total organic carbon total nitrogen stable carbon isotope HYDRODYNAMICS chlorophyll a Changjiang Estuary
下载PDF
Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area 被引量:7
16
作者 GAO Jianhua WANG Yaping +3 位作者 PAN Shaoming ZHANG Rui LI Jun BAI Fenglong 《Journal of Geographical Sciences》 SCIE CSCD 2008年第1期46-58,共13页
The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area co... The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton, after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place. 展开更多
关键词 total organic carbon total nitrogen stable carbon and nitrogen isotopes material sources Changjiang Estuary and its adjacent sea area
下载PDF
Controls on the organic carbon content of the lower Cambrian black shale in the southeastern margin of Upper Yangtze 被引量:5
17
作者 Yu-Ying Zhang Zhi-Liang He +4 位作者 Shu Jiang Shuang-Fang Lu Dian-Shi Xiao Guo-Hui Chen Jian-Hua Zhao 《Petroleum Science》 SCIE CAS CSCD 2018年第4期709-721,共13页
Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, ... Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, Longbizui and Yanbei areas) is discussed in detail in this article. Mineral components in the study strata are dominated by quartz and clay minerals. Quartz in the Niutitang Formation is mainly of biogenic origin, and the content is in positive correlation with TOC, while the content of clay minerals is negatively correlated with TOC. Primary productivity, represented by the content of Mobio(biogenic molybdenum), Babio(biogenic barium) and phosphorus, is positively correlated with TOC. The main alkanes in studied samples are nCC, and odd–even priority values are closed to 1(0.73–1.13), which suggest the organic matter source was marine plankton. Element content ratios of U/Th and Ni/Co and compound ratio Pr/Ph indicate dysoxic–anoxic bottom water, with weak positive relative with TOC. In total, three main points can be drawn to explain the relationship between data and the factors affecting organic accumulation:(1) quartz-rich and clay-mineral-poor deep shelf–slope–basin environment was favorable for living organisms;(2) high productivity provided the material foundation for organic generation;(3) the redox conditions impact slightly on the content of organic matter under high productivity and dysoxic–anoxic condition. 展开更多
关键词 Upper Yangtze Lower Cambrian Black shale total organic carbon
下载PDF
Effect of Different Irrigation Methods on Dissolved Organic Carbon and Microbial Biomass Carbon in the Greenhouse Soil 被引量:3
18
作者 HAN Lin,ZHANG Yu-long,JIN Shuo,WANG Jiao,WEI Yan-yan,CUI Ning and WEI Wei College of Land and Environmental Sciences,Shenyang Agricultural University/Liaoning Key Laboratory of Agricultural Resources and Environment,Shenyang 110161,P.R.China 《Agricultural Sciences in China》 CSCD 2010年第8期1175-1182,共8页
The objective of this study was to investigate the contents and distribution of dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at 0-100 cm soil depth under three irrigation treatments, viz., sub... The objective of this study was to investigate the contents and distribution of dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at 0-100 cm soil depth under three irrigation treatments, viz., subsurface, drip and furrow irrigation in the greenhouse soil. The soil samples were collected at different depths (0-100 cm), and the contents of soil total organic carbon (TOC), DOC and MBC were analysed. The experiment was conducted for 10 yr, during which period the application of fertilizers and crop management practices were kept identical. The results showed that the contents of TOC, DOC and MBC were significantly affected by different irrigation regimes, decreased with the increase of soil depth. TOC at 0-10 and 80-100 cm soil depths followed the order of furrow irrigation 〉 subsurface irrigation 〉 drip irrigation, whereas at the depth of 10-80 cm followed the order of subsurface irrigation 〉 furrow irrigation 〉 drip irrigation. DOC and MBC contents at 0-100 cm soil depths followed the order of furrow irrigation 〉 drip irrigation 〉 subsurface irrigation, and drip irrigation 〉 furrow irrigation 〉 subsurface irrigation, respectively. The ratios of DOC and MBC to TOC accounted for 4.98-12.87% and 1.48-2.82%, respectively, which were the highest in the drip irrigation treatment, followed were in the furrow irrigation treatment, and the lowest in subsurface irrigation treatment. There were significant positive correlations among the contents of DOC, MBC and TOC in all irrigation treatments. The furrow irrigation facilitated the accumulation of TOC and DOC, while drip irrigation increased the MBC. The content of TOC and the ratios of DOC to TOC were the lowest in subsurface irrigation treatment. 展开更多
关键词 GREENHOUSE irrigation methods total organic carbon dissolved organic carbon microbial biomass carbon
下载PDF
Losses of Soil Organic Carbon and Nitrogen and Their Mechanisms in the Desertification Process of Sandy Farmlands inHorqin Sandy Land 被引量:3
19
作者 SU Yong-zhong and ZHAO Ha-lin(Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000 , P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2003年第8期890-897,共8页
Soil organic carbon(SOC)and total nitrogen(N)concentrations from bulk soils and soil particle size fractions in the different extent of desertified farmlands(potential, light, medium, severe, and most severe desertifi... Soil organic carbon(SOC)and total nitrogen(N)concentrations from bulk soils and soil particle size fractions in the different extent of desertified farmlands(potential, light, medium, severe, and most severe desertified farmlands)were examined to quantitatively elucidate losses of carbon and nitrogen and its mechanisms in the desertification process. Particle size fractions(2 -0.1 mm, 0.1 - 0.05 mm, <0.05 mm)were obtained by granulometric wet sieving from 30 sandy soils(0 - 15cm depth)of different desertified extent. It was shown that soil physical stability index(St)in most severe desertified farmlands was 5 -7% and St in other farmlands was less than 5 %, which contributed to very low soil organic matter content. This was the intrinsic cause that sandy farmlands in Horqin sandy land was subject to risk of desertification. Desertification resulted in considerable losses of SOC and N. Regression analysis indicated that SOC and N content reduced 0.169 g kg-1 and 0.0215 g kg-1 respectively with one percent loss of soil silt and clay content. Losses of SOC and N were mostly the removal of fine particle size fractions(silt and clay, and a less extent very fine sand)from the farmlands by wind erosion, which were rich in organic matter and nutrients, as well as the depletion of organic C and N associated with coarse particles(>0. 05 mm)in desertification process. The concentrations of C and N associated with sand(2 - 0.1 mm and 0.1 - 0.05 mm)significantly decreased with increase of desertified extent. Silt and clay associated C and N concentrations, however, were less changed, and in contrast, were higher in soils under most severe desertified extent than in soils under potential and severe desertified extent. The percentage of distribution in sand(>0.05 mm)associated C and N significantly increased with increase of desertified extent, suggesting that stability of SOC decreased in the desertification process. 展开更多
关键词 Farmland desertification Soil organic carbon total nitrogen Mechanisms of losses
下载PDF
Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene-early Miocene marine shales in the Ying-Qiong Basin,South China Sea
20
作者 Wenjing Ding Youchuan Li +4 位作者 Lan Lei Li Li Shuchun Yang Yongcai Yang Dujie Hou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期31-53,共23页
The increase of total organic carbon content of the late Oligocene-early Miocene terrigenously-dominated marine shales in the shallower depth intervals was reported in the Ying-Qiong Basin,South China Sea.The organic ... The increase of total organic carbon content of the late Oligocene-early Miocene terrigenously-dominated marine shales in the shallower depth intervals was reported in the Ying-Qiong Basin,South China Sea.The organic enriched lower Sanya Formation shales(early Miocene)have biomarker characteristics of tropical/subtropical plants,with abundant high molecular weight n-alkanes,angiosperm-derived oleanane,rearranged oleananesⅠ,Ⅱ,Ⅱ,tricyclic/tetracyclic terpanes including des-A-oleanane,X,*,Y,Z,Z1 and bicadinanes W,T,T1,R.The biomarker characteristics are suggestive of larger influx of the dominant tropical/subtropical angiosperms in flora under a warming and more humid climate during depositions of the lower Sanya Formation(early Miocene)than the older Lingshui Formation(late Oligocene).The tropical/subtropical angiosperm input was thought as the prime control of terrigenous organic matter enrichment relative to the redox condition,and the coeval sea level changes and seafloor spreading in the South China Sea.Enrichment of the terrigenous organic matter in the early Miocene shales is likely in association with the coeval peak East Asian summer monsoon intensity in the South China Sea. 展开更多
关键词 total organic carbon higher plant-derived biomarkers tropical/subtropical plants East Asian monsoonal climate
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部