For addressing impulse noise in images, this paper proposes a denoising algorithm for non-convex impulse noise images based on the l_(0) norm fidelity term. Since the total variation of the l_(0) norm has a better den...For addressing impulse noise in images, this paper proposes a denoising algorithm for non-convex impulse noise images based on the l_(0) norm fidelity term. Since the total variation of the l_(0) norm has a better denoising effect on the pulse noise, it is chosen as the model fidelity term, and the overlapping group sparse term combined with non-convex higher term is used as the regularization term of the model to protect the image edge texture and suppress the staircase effect. At the same time, the alternating direction method of multipliers, the majorization–minimization method and the mathematical program with equilibrium constraints were used to solve the model. Experimental results show that the proposed model can effectively suppress the staircase effect in smooth regions, protect the image edge details, and perform better in terms of the peak signal-to-noise ratio and the structural similarity index measure.展开更多
Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
Abstract This paper aims at the multichannel synthetic aperture radar (SAR) image speckle reduc- tion. This paper proposes a novel energy minimized regularization model for multichannel image denoising, which is an ...Abstract This paper aims at the multichannel synthetic aperture radar (SAR) image speckle reduc- tion. This paper proposes a novel energy minimized regularization model for multichannel image denoising, which is an extension of the non-local total variational model for gray-scale image. It contains two terms, namely the vectorial data fidelity term and the non-local vectorial total variation term. The latter is constructed by high-dimensional non-local gradient that contains the structure information of the multichannel image. The existence and the uniqueness of the solution of the model are proved. A fixed point iterative algorithm is designed to acquire the solution of this model. The convergence property of this algorithm is proved as well. This model is applied to the multipolarimetric and multi-temporal RAI)ARSAT-2 images despeckling. The result shows that this model performs better than the original vectorial total variational model on texture preserving.展开更多
In this paper, we propose new pretreat models for total variation (TV) minimization problems in image deblurring and denoising. Specially, blur operator is considered as useful information in restoration. New models...In this paper, we propose new pretreat models for total variation (TV) minimization problems in image deblurring and denoising. Specially, blur operator is considered as useful information in restoration. New models in form is equivalent to pretreat the initial value by image blur operator. We successfully get a new (L. Rudin, S. Osher, and E. Fatemi) ROF model, a new level set motion model and a new anisotropic diffusion model respectively. Numerical experiments demonstrate that, under the same stopping rule, the proposed methods significantly accelerate the convergence of the toothed, save computation time and get the same restored effect.展开更多
As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot...As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications.展开更多
Few previous Reversible Visible Watermarking(RVW)schemes have both good transparency and watermark visibility.An adaptive RVW scheme that integrates Total Variation and visual perception in Block Truncation Coding(BTC...Few previous Reversible Visible Watermarking(RVW)schemes have both good transparency and watermark visibility.An adaptive RVW scheme that integrates Total Variation and visual perception in Block Truncation Coding(BTC)compressed domain,called TVB-RVW is proposed in this paper.A new mean image estimation method for BTC-compressed images is first developed with the help of Total Variation.Then,a visual perception factor computation model is devised by fusing texture and luminance characteristics.An adaptive watermark embedding strategy is used to embed the visible watermark with the effect of the visual perception factor in the BTC domain.Moreover,a lossless embedding method of the encrypted visible watermark is exploited to deter illegal watermark removal.The visible watermark can be removed since the visual perception factor and the estimated mean image remain unchanged before and after watermark embedding.Extensive experiments validate the superiority of the proposed algorithm over previous RVW schemes in BTC in terms of the visual quality of watermarked images and watermark visibility,and it can achieve a good balance between transparency and watermark visibility.展开更多
A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-...A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-sampled sparse data.The Gini index(GI)has been founded that it is the only sparsity measure that has all sparsity attributes that are called Robin Hood,Scaling,Rising Tide,Cloning,Bill Gates,and Babies.By combining the total variation(TV)operator,the GI-TV mixed regularization introduced compressive near-field MMW imaging model is proposed.In addition,the corresponding algorithm based on a primal-dual framework is also proposed.Experimental results demonstrate that the proposed GI-TV mixed regularization algorithm has superior convergence and stability performance compared with the widely used l1-TV mixed regularization algorithm.展开更多
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation m...As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.展开更多
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple boun...For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.展开更多
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil...A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorizati...This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.展开更多
In foggy weather, images of outdoor scene are usually characterized with poor visibility as well as faint color saturation. The degraded hazy images may have substantial negative impact on most computer vision systems...In foggy weather, images of outdoor scene are usually characterized with poor visibility as well as faint color saturation. The degraded hazy images may have substantial negative impact on most computer vision systems. Thus image haze removal is of the practical significance in engineering. This paper proposes a fast and effective single image haze removal algorithm on the basis of the physics imaging model. To extract the global atmospheric light accurately, we exploit multiple prior rules underlying hazy images, and put forward a novel measurement to judge the likelihood that a pixel is regarded as the global atmospheric light. In addition, the rough transmission map is estimated through a multiscale fusion process based on the Laplace pyramid transform, and refined by a total variation model. Experimental results demonstrate the proposed method outperforms most of the state-of-the-art algorithms in terms of the dehazing quality, and achieves a trade-off between the computational efficiency and haze removal capability.展开更多
In this paper,we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in ...In this paper,we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration.Numerical results are shown to illustrate the performance of the proposed method.展开更多
Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the sta...Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.展开更多
The relation between the toal variation of classical field theory and the multisymplectic structure is shown. Then the multisymplectic structure and the corresponding multisymplectic conservation of the coupled nonlin...The relation between the toal variation of classical field theory and the multisymplectic structure is shown. Then the multisymplectic structure and the corresponding multisymplectic conservation of the coupled nonlinear Schroedinger system are obtained directly from the variational principle.展开更多
New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are give...New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are given in a variational formulation with adaptive regularization norms for both the cartoon and texture parts. The adaptive behavior preserves key features such as object boundaries and textures while avoiding staircasing in what should be smooth regions. This decomposition is computed by minimizing a convex functional which depends on the two variables u and v, alternatively in each variable. Experimental results and comparisons to validate the proposed models are presented.展开更多
The blurred image restoration method can dramatically highlight the image details and enhance the global contrast, which is of benefit to improvement of the visual effect during practical ap- plications. This paper is...The blurred image restoration method can dramatically highlight the image details and enhance the global contrast, which is of benefit to improvement of the visual effect during practical ap- plications. This paper is based on the dark channel prior principle and aims at the prior information absent blurred image degradation situation. A lot of improvements have been made to estimate the transmission map of blurred images. Since the dark channel prior principle can effectively restore the blurred image at the cost of a large amount of computation, the total variation (TV) and image morphology transform (specifically top-hat transform and bottom- hat transform) have been introduced into the improved method. Compared with original transmission map estimation methods, the proposed method features both simplicity and accuracy. The es- timated transmission map together with the element can restore the image. Simulation results show that this method could inhibit the ill-posed problem during image restoration, meanwhile it can greatly improve the image quality and definition.展开更多
A novel image restoration model coupling with a gradient fidelity term based on adaptive total variation is proposed in this paper. In order to choose proper parameters, the selection criteria were analyzed theoretica...A novel image restoration model coupling with a gradient fidelity term based on adaptive total variation is proposed in this paper. In order to choose proper parameters, the selection criteria were analyzed theoretically, and a simple scheme to demonstrate its validity was adopted experimentally. To make fair comparisons of performances of three models, the same numerical algorithm was used to solve partial differential equations. Both the international standard test image on Lena and HR image of CBERS-02B of Dalian city were used to verify the performance of the model. Experimental results illustrate that the new model not only preserved the edge and important details but also alleviated the staircase effect effectively.展开更多
基金funded by National Nature Science Foundation of China,grant number 61302188。
文摘For addressing impulse noise in images, this paper proposes a denoising algorithm for non-convex impulse noise images based on the l_(0) norm fidelity term. Since the total variation of the l_(0) norm has a better denoising effect on the pulse noise, it is chosen as the model fidelity term, and the overlapping group sparse term combined with non-convex higher term is used as the regularization term of the model to protect the image edge texture and suppress the staircase effect. At the same time, the alternating direction method of multipliers, the majorization–minimization method and the mathematical program with equilibrium constraints were used to solve the model. Experimental results show that the proposed model can effectively suppress the staircase effect in smooth regions, protect the image edge details, and perform better in terms of the peak signal-to-noise ratio and the structural similarity index measure.
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
基金supported by the National Natural Science Foundation of China(Nos.61072142,61271437,61201337)the Science Research Project of National University of Defense Technology of China(Nos.JC12-02-05,JC13-02-03)
文摘Abstract This paper aims at the multichannel synthetic aperture radar (SAR) image speckle reduc- tion. This paper proposes a novel energy minimized regularization model for multichannel image denoising, which is an extension of the non-local total variational model for gray-scale image. It contains two terms, namely the vectorial data fidelity term and the non-local vectorial total variation term. The latter is constructed by high-dimensional non-local gradient that contains the structure information of the multichannel image. The existence and the uniqueness of the solution of the model are proved. A fixed point iterative algorithm is designed to acquire the solution of this model. The convergence property of this algorithm is proved as well. This model is applied to the multipolarimetric and multi-temporal RAI)ARSAT-2 images despeckling. The result shows that this model performs better than the original vectorial total variational model on texture preserving.
基金Supported by Youth Foundation of Tianyuan Mathematics,National Natural Science Foundation of China(Grant No. 10926037)the National Natural Science Foundation of China (Grant No.10771210 and No.11001239)partially supported by Singapore MOE Grant T207B2202,Singapore NRF2007IDM-IDM002-010
文摘In this paper, we propose new pretreat models for total variation (TV) minimization problems in image deblurring and denoising. Specially, blur operator is considered as useful information in restoration. New models in form is equivalent to pretreat the initial value by image blur operator. We successfully get a new (L. Rudin, S. Osher, and E. Fatemi) ROF model, a new level set motion model and a new anisotropic diffusion model respectively. Numerical experiments demonstrate that, under the same stopping rule, the proposed methods significantly accelerate the convergence of the toothed, save computation time and get the same restored effect.
文摘As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61872408the Natural Science Foundation of Hunan Province under Grant 2020JJ4238+1 种基金the Social Science Foundation of Hunan Province under Grant 19YBA098the Research Fund of Hunan provincial key laboratory of informationization technology for basic education under Grant 2015TP1017.
文摘Few previous Reversible Visible Watermarking(RVW)schemes have both good transparency and watermark visibility.An adaptive RVW scheme that integrates Total Variation and visual perception in Block Truncation Coding(BTC)compressed domain,called TVB-RVW is proposed in this paper.A new mean image estimation method for BTC-compressed images is first developed with the help of Total Variation.Then,a visual perception factor computation model is devised by fusing texture and luminance characteristics.An adaptive watermark embedding strategy is used to embed the visible watermark with the effect of the visual perception factor in the BTC domain.Moreover,a lossless embedding method of the encrypted visible watermark is exploited to deter illegal watermark removal.The visible watermark can be removed since the visual perception factor and the estimated mean image remain unchanged before and after watermark embedding.Extensive experiments validate the superiority of the proposed algorithm over previous RVW schemes in BTC in terms of the visual quality of watermarked images and watermark visibility,and it can achieve a good balance between transparency and watermark visibility.
基金supported in part by the National Natural Science Foundation of China under Grants No.62027803,No.61601096,No.61971111,No.61801089,and No.61701095in part by the Science and Technology Program under Grants No.8091C24,No.80904020405,No.2021JCJQJJ0949,and No.2022JCJQJJ0784in part by Industrial Technology Development Program under Grant No.2020110C041.
文摘A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-sampled sparse data.The Gini index(GI)has been founded that it is the only sparsity measure that has all sparsity attributes that are called Robin Hood,Scaling,Rising Tide,Cloning,Bill Gates,and Babies.By combining the total variation(TV)operator,the GI-TV mixed regularization introduced compressive near-field MMW imaging model is proposed.In addition,the corresponding algorithm based on a primal-dual framework is also proposed.Experimental results demonstrate that the proposed GI-TV mixed regularization algorithm has superior convergence and stability performance compared with the widely used l1-TV mixed regularization algorithm.
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the National Natural Science Foundation of China(No.11875129)+3 种基金the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY08)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02).
文摘As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.
文摘For solving two-dimensional incompressible flow in the vorticity form by the fourth-order compact finite difference scheme and explicit strong stability preserving temporal discretizations,we show that the simple bound-preserving limiter in Li et al.(SIAM J Numer Anal 56:3308–3345,2018)can enforce the strict bounds of the vorticity,if the velocity field satisfies a discrete divergence free constraint.For reducing oscillations,a modified TVB limiter adapted from Cockburn and Shu(SIAM J Numer Anal 31:607–627,1994)is constructed without affecting the bound-preserving property.This bound-preserving finite difference method can be used for any passive convection equation with a divergence free velocity field.
基金The National Basic Research Program of China(973Program)(No.2011CB707904)the National Natural Science Foundation of China(No.61201344,61271312,61073138)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023,20120092120036)the Natural Science Foundation of Jiangsu Province(No.BK2012329)
文摘A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金supported by the National Natural Science Foundation of China(61702251,41971424,61701191,U1605254)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)+4 种基金the Key Technical Project of Fujian Province(2017H6015)the Science and Technology Project of Xiamen(3502Z20183032)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University(360051900151)the Natural Sciences and Engineering Research Council of Canada,Canada。
文摘This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms.
基金supported by the National Natural Science Foundation of China(61571241)the Industry-University-research Prospective Joint Project of Jiangsu Province(BY2014014)+2 种基金the Major Projects of Jiangsu Province University Natural Science Research(15KJA510002)the Jiangsu Province Graduate Research and Innovation Project(CXZZ130476)the Science Research Fund of NUPT(NY215169)
文摘In foggy weather, images of outdoor scene are usually characterized with poor visibility as well as faint color saturation. The degraded hazy images may have substantial negative impact on most computer vision systems. Thus image haze removal is of the practical significance in engineering. This paper proposes a fast and effective single image haze removal algorithm on the basis of the physics imaging model. To extract the global atmospheric light accurately, we exploit multiple prior rules underlying hazy images, and put forward a novel measurement to judge the likelihood that a pixel is regarded as the global atmospheric light. In addition, the rough transmission map is estimated through a multiscale fusion process based on the Laplace pyramid transform, and refined by a total variation model. Experimental results demonstrate the proposed method outperforms most of the state-of-the-art algorithms in terms of the dehazing quality, and achieves a trade-off between the computational efficiency and haze removal capability.
基金supported in part by NSFC Grant No.60702030supported in part by NSFC Grant No.10871075the wavelets and information processing program under a grant from DSTA,Singapore
文摘In this paper,we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration.Numerical results are shown to illustrate the performance of the proposed method.
基金supported by the National Natural Science Foundation of China(6127129461301229)+1 种基金the Doctoral Research Fund of Henan University of Science and Technology(0900170809001751)
文摘Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10401033 and 10471145 and the Key Project of Knowledge Innovation of CAS under Grant No. KZCX1-SW-18
文摘The relation between the toal variation of classical field theory and the multisymplectic structure is shown. Then the multisymplectic structure and the corresponding multisymplectic conservation of the coupled nonlinear Schroedinger system are obtained directly from the variational principle.
文摘New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are given in a variational formulation with adaptive regularization norms for both the cartoon and texture parts. The adaptive behavior preserves key features such as object boundaries and textures while avoiding staircasing in what should be smooth regions. This decomposition is computed by minimizing a convex functional which depends on the two variables u and v, alternatively in each variable. Experimental results and comparisons to validate the proposed models are presented.
基金supported by the National Natural Science Foundation of China(61301095)the Chinese University Scientific Fund(HEUCF130807)the Chinese Defense Advanced Research Program of Science and Technology(10J3.1.6)
文摘The blurred image restoration method can dramatically highlight the image details and enhance the global contrast, which is of benefit to improvement of the visual effect during practical ap- plications. This paper is based on the dark channel prior principle and aims at the prior information absent blurred image degradation situation. A lot of improvements have been made to estimate the transmission map of blurred images. Since the dark channel prior principle can effectively restore the blurred image at the cost of a large amount of computation, the total variation (TV) and image morphology transform (specifically top-hat transform and bottom- hat transform) have been introduced into the improved method. Compared with original transmission map estimation methods, the proposed method features both simplicity and accuracy. The es- timated transmission map together with the element can restore the image. Simulation results show that this method could inhibit the ill-posed problem during image restoration, meanwhile it can greatly improve the image quality and definition.
基金Supported by the National Basic Research Program of China ("973"Program)(2009CB72400603) the National Natural Science Foundation of China(6102700260972100)
文摘A novel image restoration model coupling with a gradient fidelity term based on adaptive total variation is proposed in this paper. In order to choose proper parameters, the selection criteria were analyzed theoretically, and a simple scheme to demonstrate its validity was adopted experimentally. To make fair comparisons of performances of three models, the same numerical algorithm was used to solve partial differential equations. Both the international standard test image on Lena and HR image of CBERS-02B of Dalian city were used to verify the performance of the model. Experimental results illustrate that the new model not only preserved the edge and important details but also alleviated the staircase effect effectively.