Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widesp...Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.展开更多
Ceramics constitute an integral part of highly efficient armours due to their low density, high hardness, strength and stiffness. However, they lack toughness and multi-hit capability. Therefore, zirconia toughened al...Ceramics constitute an integral part of highly efficient armours due to their low density, high hardness, strength and stiffness. However, they lack toughness and multi-hit capability. Therefore, zirconia toughened alumina is investigated. The hardness is evaluated using Vickers, Knoop and instrumented indentations, while the fracture toughness is evaluated using the indentation technique and Charpy tests. The strength is evaluated using ring-on-ring, four point bend and drop weight tests. The Young’s modulus is evaluated using the unloading instrumented indentation curves. Microstructure, porosity and density are characterised using ultrasonic scanning, Archimedes principle, optical and scanning electron microscopy. Results show an indentation size effect on all mechanical properties. A substantial improvement in toughness is achieved through retardation of crack initiation by tetragonal-to-monoclinic phase transformation in zirconia particles, crack deviation thanks to appropriate grain structure, as well as energy absorption by densification due to remaining porosity. This improved toughness is expected to promote multi-hit capability.展开更多
Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of ...Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of the ceramics was observed by means of SEM and EPMA. The fracture toughness of the multiphase ceramics was tested by using the Vickers indentation method. The fracture toughness of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.96 MPa·m^1/2 and that of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.23 MPa·m^1/2. The toughening mechanisms were systematically investigated by means of SEM and XRD. The results show that the bridging toughening mechanism, stress induced ZrO2 transformation toughening mechanism, and microcrack toughening mechanism are the predominant toughening mechanism.展开更多
According to the present theories of plastic toughening, it is impossible to enhance the toughness, stiffness and/orheat resistance of plastics simultaneously by using rubber. A series of novel nano-rubber particles (...According to the present theories of plastic toughening, it is impossible to enhance the toughness, stiffness and/orheat resistance of plastics simultaneously by using rubber. A series of novel nano-rubber particles (UFPR) were introduced,which were prepared through irradiating common rubber lattices and spray drying them. Epoxies toughened with UFPRshowed a much better toughening effect than those with CTBN, and the heat resistance of epoxy was unexpectedly elevated.For polypropylene toughening, UFPR can improve the toughness, stiffness and heat resistance of PP simultaneously. Thesespecial toughening effects overcome the deficiencies in rubber toughening technology and are worth further investigating.展开更多
The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with diffe...The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with different parameters,which were characterized by OM and SEM.The size and content ofαplates were mainly determined by cooling rate from singleβphase field and solution temperature in two-phase field;while the precipitation behavior of secondaryαplatelets was dominantly controlled by aging temperature in two-phase field.The content and thickness ofαplates and the thickness of secondaryαplatelets were important microstructural features influencing the fracture toughness.Both increasing the content ofαplates and thickeningαplates(or secondaryαplatelets)could enhance the fracture toughness of TC21alloy.Based on energy consumption by the plastic zone of crack tip inαplates,a toughening mechanism for titanium alloys was proposed.展开更多
The miscibility,mechanical properties,morphology and toughening mechanism of PC/PBA-PMMA blends wereinvestigated.The dynamic mechanical results show that PC/PBA-PMMA blend has good miscibility and strong interfacialad...The miscibility,mechanical properties,morphology and toughening mechanism of PC/PBA-PMMA blends wereinvestigated.The dynamic mechanical results show that PC/PBA-PMMA blend has good miscibility and strong interfacialadhesion.The Izod impact strength of blend PC/PBA-PMMA with 4%(volume fraction)PBA-PMMA core-shell modifier is16 times higher than that of pure PC.The core-shell volume fraction and thickness of the PMMA shell have effect on thetoughness of PC/PBA-PMMA blends.As PMMA volume fraction increases,the toughness of PC/PBA-PMMA blendincreases,and reaches a maximum value at 30% volume fraction of PMMA or so.The tensile properties of PC/PBA-PMMAblend with a minimum amount of PBA-PMMA modifier show that brittle-tough transition has no significant variance incomparison with that of pure PC.The scanning electron microscopic(SEM)observation indicates that the tougheningmechanism of the blend with the pseudo-ductile matrix modified by small core-shell latex polymer particles is the synergeticeffect of cavitation and shear yielding of the matrix.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc...It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.展开更多
Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-p...Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper.展开更多
Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the mo...Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.展开更多
The application of an external field is a promising method to control the microstructure of materials, leading to their improved performance. In the present paper, the strengthening and toughening behavior of some typ...The application of an external field is a promising method to control the microstructure of materials, leading to their improved performance. In the present paper, the strengthening and toughening behavior of some typical high-performance structural materials subjected to multifield coupling treatment, including electrostatic field, electro-pulse current, thermal field, and stress field, are reviewed in detail. In addition to the general observation that the plasticity of materials could be increased by multi-external fields, strength enhancement can be achieved by controlling atomic diffusion or phase transformations. The paper is not limited to the strengthening and toughening mechanisms of the multifield coupling effects on different types of structural materials but is intended to provide a generic method to improve both the strength and ductility of the materials. Finally, the prospects of the applications of multi-external fields have also been proposed based on current works.展开更多
Strengthening and toughening mechanisms in composite ceramics is complex. A change in a single parameter induces multiple property variations. The multiple changes in properties are often incompletely represented in t...Strengthening and toughening mechanisms in composite ceramics is complex. A change in a single parameter induces multiple property variations. The multiple changes in properties are often incompletely represented in theoretical models. This incompleteness in the parameter chosen fails to explain the mechanism of failure in composite ceramics. The exponential toughness function is used to represent the pull-out toughening mechanism, which dominates the crack growth resistance curve(R-curve). The strengthening-toughening model is established based on the Mori-Tanaka method(M-T method). The influence of inherent defects on toughness function and strength is analyzed by using this model. The theoretical result is compared with the experiment data. This model exactly reflects the change in strength. The theoretical result indicates that defects change the toughness function. Moreover, micro-cracks increase toughness size ac, and the strength of crack instable extensions acutely decreases as defect content increases. This presented model establishes the relationship among the important mechanical parameters of defect, strength, elastic modulus, and the R-curve.展开更多
The mechanical and thermal properties of polypropylene (PP)/muscovite/ low-density polyethylene (LDPE)/ polypropylenegraftmaleic anhydride (PP-g-MAH) ternary composites were investigated. In PP matrix, muscovite...The mechanical and thermal properties of polypropylene (PP)/muscovite/ low-density polyethylene (LDPE)/ polypropylenegraftmaleic anhydride (PP-g-MAH) ternary composites were investigated. In PP matrix, muscovite, LDPE, and PP-g-MAH were added as strengthening agent, toughening agent, and compatibilizer, respectively. The effects of dosages of the added materials were analyzed. The - experimental results show that the optimum recipe of PP/muscovite/LDPE/PP-g-MAH composites is 100/10/6/20 (mass ratio). Compared with the pure PP, the mechanical properties of PP/muscovite/LDPE/PP-g-MAH composites, including notched impact strength, Rockwell hardness and flexural strength, are improved. Although tensile strength is slightly decreased, they have better toughness. Filled with muscovite, the heat-resistance and heat-decompostion of the composites are improved.展开更多
The in situ synthesized MoSi2-SiC composite is proved to be of higher fracture toughness than the monolithic MoSi2. The TEM and HREM study reveals that the interface between MoSi2/SiC is of direct atomic bonding witho...The in situ synthesized MoSi2-SiC composite is proved to be of higher fracture toughness than the monolithic MoSi2. The TEM and HREM study reveals that the interface between MoSi2/SiC is of direct atomic bonding without any amorphous glassy phase, such the SiO2 structure. Based on the fractography and the observation of crack propagation path from indentation, it is concluded that the toughening of such composite at room temperature can be attributed to the high interfacial binding energy, the refinement of the MoSi2 matrix and the deflection and bridging behavior in the crack propagation.展开更多
With the help of scanning electronic microscopy and X-ray diffraction, the relationships of microstructure characteristics, phase assemblage, and fracture micrograph of Al2O3/ZrO2 laminated ceramics were studied. Comp...With the help of scanning electronic microscopy and X-ray diffraction, the relationships of microstructure characteristics, phase assemblage, and fracture micrograph of Al2O3/ZrO2 laminated ceramics were studied. Compared with monolithic Al2O3/ZrO2 ceramics, the existence of surface compressive stresses greatly restrained the growth of ZrO2 and Al2O3 grains at high sinter temperature, fined the grain size, and increased the content of metastable t-ZrO2, which made the fracture transformation energy quantity 70% higher than that of the monolithic ceramics. The trans-granular and inter-granular fracture features were observed in the surface and center layers, which further verified that transformation toughening is the main mechanism, whereas, micro-crack toughening is helpful for enhancing fracture toughness.展开更多
Phenolic foams(PFs)as thermal insulation material with outstanding flame retardancy are required to match society’s ever-expanding safety expectations;however,a trade-off exists between flame retardancy and toughness...Phenolic foams(PFs)as thermal insulation material with outstanding flame retardancy are required to match society’s ever-expanding safety expectations;however,a trade-off exists between flame retardancy and toughness.Here,for the first time,we synthesized a novel reactive phosphorus-containing tung-oil-based derivative and used it to toughen PF,resulting in PFs with a combination of excellent mechanical properties and flame retardancy.Compared with pure PF,the modified PFs exhibit enhanced mechanical properties,with specific compressive and flexural strengths as high as 5.67 MPa and 12.46 MPa,which represent increases of 90.67%and 178.7%over those of pure PF,respectively.Meanwhile,the limiting oxygen index(LOI)values of the modified PFs are improved as much as 40.83%.Scanning electron microscopy micrographs show that the microstructure of the modified PFs is better than that of pure PF,with a more uniform cell morphology,a narrower pore size distribution range,and a smaller average pore size,all of which are beneficial to the foam’s mechanical properties.This study provides a scientific paradigm for the development of advanced PFs based on renewable biological resources.展开更多
The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurit...The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the AL2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties.展开更多
The particulate toughening behaviour of epoxy resins modified by ductile thermoplastics is elucidated here by various bridging models. The experimental data for three different epoxy/PSF sys- tems are presented to ill...The particulate toughening behaviour of epoxy resins modified by ductile thermoplastics is elucidated here by various bridging models. The experimental data for three different epoxy/PSF sys- tems are presented to illustrate the trend of the toughening characteristics. The conventional continuous bridging model is shown to have underestimated the effect of the particulate toughening. A joint appli- cation of the discrete bridging model and the multiple bridging model, however, shows promising result for modified epoxy systems such as AG80/DDS/PSF and E51/DDS/PSF. These models also provide quantitative descriptions for the crack pinning phenomenon previously observed by Fu and Sun in AG80/DDS/PSF.展开更多
The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of h...The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.展开更多
The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structu...The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structure, and that a rather high impact and tensile strength of HDPE may be obtained after blending. The antistatic effect, the softening point,and HDT of the blend are higher as compared to HDPE/Zn-SEPDM/ZnSt (zinc stearate).The effect of Zn-SEPDM on the compatibility the morphology and properties of IPP blends were studied by DSC, TEM and mechanical properties test. The results show that as Zn-SEPDM content exceeds 20%. Zn-SEPDM in the blend becomes continuous and an abrupt change in impact strength is incurred there from. Owing to the incorporation of ionic groups into EPDM.the strong interactions betWeen the chains make both the impact and the tensile strength of IPP remarkably higher展开更多
文摘Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.
文摘Ceramics constitute an integral part of highly efficient armours due to their low density, high hardness, strength and stiffness. However, they lack toughness and multi-hit capability. Therefore, zirconia toughened alumina is investigated. The hardness is evaluated using Vickers, Knoop and instrumented indentations, while the fracture toughness is evaluated using the indentation technique and Charpy tests. The strength is evaluated using ring-on-ring, four point bend and drop weight tests. The Young’s modulus is evaluated using the unloading instrumented indentation curves. Microstructure, porosity and density are characterised using ultrasonic scanning, Archimedes principle, optical and scanning electron microscopy. Results show an indentation size effect on all mechanical properties. A substantial improvement in toughness is achieved through retardation of crack initiation by tetragonal-to-monoclinic phase transformation in zirconia particles, crack deviation thanks to appropriate grain structure, as well as energy absorption by densification due to remaining porosity. This improved toughness is expected to promote multi-hit capability.
文摘Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of the ceramics was observed by means of SEM and EPMA. The fracture toughness of the multiphase ceramics was tested by using the Vickers indentation method. The fracture toughness of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.96 MPa·m^1/2 and that of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.23 MPa·m^1/2. The toughening mechanisms were systematically investigated by means of SEM and XRD. The results show that the bridging toughening mechanism, stress induced ZrO2 transformation toughening mechanism, and microcrack toughening mechanism are the predominant toughening mechanism.
基金This work was financially supported by the Special Funds for Major State Basic Research Projects of China (No. G1999064800).
文摘According to the present theories of plastic toughening, it is impossible to enhance the toughness, stiffness and/orheat resistance of plastics simultaneously by using rubber. A series of novel nano-rubber particles (UFPR) were introduced,which were prepared through irradiating common rubber lattices and spray drying them. Epoxies toughened with UFPRshowed a much better toughening effect than those with CTBN, and the heat resistance of epoxy was unexpectedly elevated.For polypropylene toughening, UFPR can improve the toughness, stiffness and heat resistance of PP simultaneously. Thesespecial toughening effects overcome the deficiencies in rubber toughening technology and are worth further investigating.
文摘The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with different parameters,which were characterized by OM and SEM.The size and content ofαplates were mainly determined by cooling rate from singleβphase field and solution temperature in two-phase field;while the precipitation behavior of secondaryαplatelets was dominantly controlled by aging temperature in two-phase field.The content and thickness ofαplates and the thickness of secondaryαplatelets were important microstructural features influencing the fracture toughness.Both increasing the content ofαplates and thickeningαplates(or secondaryαplatelets)could enhance the fracture toughness of TC21alloy.Based on energy consumption by the plastic zone of crack tip inαplates,a toughening mechanism for titanium alloys was proposed.
基金This work was supported by the National Natural Science Foundation of China(Nos.5030301750373044+8 种基金50253002500730242007403720490220503900905002700120023003)the Special Funds for Major State Basic Research Projects(No.2003CB615600)the Chi
文摘The miscibility,mechanical properties,morphology and toughening mechanism of PC/PBA-PMMA blends wereinvestigated.The dynamic mechanical results show that PC/PBA-PMMA blend has good miscibility and strong interfacialadhesion.The Izod impact strength of blend PC/PBA-PMMA with 4%(volume fraction)PBA-PMMA core-shell modifier is16 times higher than that of pure PC.The core-shell volume fraction and thickness of the PMMA shell have effect on thetoughness of PC/PBA-PMMA blends.As PMMA volume fraction increases,the toughness of PC/PBA-PMMA blendincreases,and reaches a maximum value at 30% volume fraction of PMMA or so.The tensile properties of PC/PBA-PMMAblend with a minimum amount of PBA-PMMA modifier show that brittle-tough transition has no significant variance incomparison with that of pure PC.The scanning electron microscopic(SEM)observation indicates that the tougheningmechanism of the blend with the pseudo-ductile matrix modified by small core-shell latex polymer particles is the synergeticeffect of cavitation and shear yielding of the matrix.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金from the Special Fund for the Program for Zhejiang Provincial Natural Science Foundation of China(LZ16C160001)National Key Research and Development Program(2017YFD0601105),the National Natural Science Foundation of China(Grant No.21806142)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20B070002).
文摘It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.
基金S&T Project No.2006B14601004,Guangdong ProvinceS&T Project No.62047,Educational Bureau,Guanzhou City Fund of Natural Science,Guangdong Province(No.05001885)
文摘Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper.
基金Sponsored by the National Natural Science Foundation of China
文摘Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.
基金financially supported by the National Natural Science Foundation of China (Nos. U1708253 and 51571052)the Major Technology Projects of Liaoning Province, China (No. 2019JH1/10100004)the Natural Science Foundation of Liaoning Province, China (No. 2019MS-122)。
文摘The application of an external field is a promising method to control the microstructure of materials, leading to their improved performance. In the present paper, the strengthening and toughening behavior of some typical high-performance structural materials subjected to multifield coupling treatment, including electrostatic field, electro-pulse current, thermal field, and stress field, are reviewed in detail. In addition to the general observation that the plasticity of materials could be increased by multi-external fields, strength enhancement can be achieved by controlling atomic diffusion or phase transformations. The paper is not limited to the strengthening and toughening mechanisms of the multifield coupling effects on different types of structural materials but is intended to provide a generic method to improve both the strength and ductility of the materials. Finally, the prospects of the applications of multi-external fields have also been proposed based on current works.
基金Supported by National Natural Science Foundation of China(Grant No11272355)
文摘Strengthening and toughening mechanisms in composite ceramics is complex. A change in a single parameter induces multiple property variations. The multiple changes in properties are often incompletely represented in theoretical models. This incompleteness in the parameter chosen fails to explain the mechanism of failure in composite ceramics. The exponential toughness function is used to represent the pull-out toughening mechanism, which dominates the crack growth resistance curve(R-curve). The strengthening-toughening model is established based on the Mori-Tanaka method(M-T method). The influence of inherent defects on toughness function and strength is analyzed by using this model. The theoretical result is compared with the experiment data. This model exactly reflects the change in strength. The theoretical result indicates that defects change the toughness function. Moreover, micro-cracks increase toughness size ac, and the strength of crack instable extensions acutely decreases as defect content increases. This presented model establishes the relationship among the important mechanical parameters of defect, strength, elastic modulus, and the R-curve.
基金Funded by the 11th Five-Year National Key Technology R&D Pro-gram(2006BAB12B02)
文摘The mechanical and thermal properties of polypropylene (PP)/muscovite/ low-density polyethylene (LDPE)/ polypropylenegraftmaleic anhydride (PP-g-MAH) ternary composites were investigated. In PP matrix, muscovite, LDPE, and PP-g-MAH were added as strengthening agent, toughening agent, and compatibilizer, respectively. The effects of dosages of the added materials were analyzed. The - experimental results show that the optimum recipe of PP/muscovite/LDPE/PP-g-MAH composites is 100/10/6/20 (mass ratio). Compared with the pure PP, the mechanical properties of PP/muscovite/LDPE/PP-g-MAH composites, including notched impact strength, Rockwell hardness and flexural strength, are improved. Although tensile strength is slightly decreased, they have better toughness. Filled with muscovite, the heat-resistance and heat-decompostion of the composites are improved.
基金the National Natural Science Foundation of China (No. 59895150-04-02).
文摘The in situ synthesized MoSi2-SiC composite is proved to be of higher fracture toughness than the monolithic MoSi2. The TEM and HREM study reveals that the interface between MoSi2/SiC is of direct atomic bonding without any amorphous glassy phase, such the SiO2 structure. Based on the fractography and the observation of crack propagation path from indentation, it is concluded that the toughening of such composite at room temperature can be attributed to the high interfacial binding energy, the refinement of the MoSi2 matrix and the deflection and bridging behavior in the crack propagation.
基金This work was financially supported by the National Natural Science Foundation of China (No.59995440).
文摘With the help of scanning electronic microscopy and X-ray diffraction, the relationships of microstructure characteristics, phase assemblage, and fracture micrograph of Al2O3/ZrO2 laminated ceramics were studied. Compared with monolithic Al2O3/ZrO2 ceramics, the existence of surface compressive stresses greatly restrained the growth of ZrO2 and Al2O3 grains at high sinter temperature, fined the grain size, and increased the content of metastable t-ZrO2, which made the fracture transformation energy quantity 70% higher than that of the monolithic ceramics. The trans-granular and inter-granular fracture features were observed in the surface and center layers, which further verified that transformation toughening is the main mechanism, whereas, micro-crack toughening is helpful for enhancing fracture toughness.
基金from the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(No.CAFYBB2018MA001).
文摘Phenolic foams(PFs)as thermal insulation material with outstanding flame retardancy are required to match society’s ever-expanding safety expectations;however,a trade-off exists between flame retardancy and toughness.Here,for the first time,we synthesized a novel reactive phosphorus-containing tung-oil-based derivative and used it to toughen PF,resulting in PFs with a combination of excellent mechanical properties and flame retardancy.Compared with pure PF,the modified PFs exhibit enhanced mechanical properties,with specific compressive and flexural strengths as high as 5.67 MPa and 12.46 MPa,which represent increases of 90.67%and 178.7%over those of pure PF,respectively.Meanwhile,the limiting oxygen index(LOI)values of the modified PFs are improved as much as 40.83%.Scanning electron microscopy micrographs show that the microstructure of the modified PFs is better than that of pure PF,with a more uniform cell morphology,a narrower pore size distribution range,and a smaller average pore size,all of which are beneficial to the foam’s mechanical properties.This study provides a scientific paradigm for the development of advanced PFs based on renewable biological resources.
基金the National Natural Science Foundation of China!29671034
文摘The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the AL2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties.
基金The project sponsored by the National Natural Science Foundation of China under the Grant 5870134.
文摘The particulate toughening behaviour of epoxy resins modified by ductile thermoplastics is elucidated here by various bridging models. The experimental data for three different epoxy/PSF sys- tems are presented to illustrate the trend of the toughening characteristics. The conventional continuous bridging model is shown to have underestimated the effect of the particulate toughening. A joint appli- cation of the discrete bridging model and the multiple bridging model, however, shows promising result for modified epoxy systems such as AG80/DDS/PSF and E51/DDS/PSF. These models also provide quantitative descriptions for the crack pinning phenomenon previously observed by Fu and Sun in AG80/DDS/PSF.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)Key Special Project of Numerical Control Machine Tool of China(Grant No.2012ZX04003-051)China Postdoctoral Science Special Foundation(Grant No.2012T50610)
文摘The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.
文摘The morphology and properties of HDPE blends with Zn-SEPDM and GR were studied through SEM and mechanical property test. The results show that as Zn-SEPDM/GR content amounts to 20%, the blend becomes an IPN in structure, and that a rather high impact and tensile strength of HDPE may be obtained after blending. The antistatic effect, the softening point,and HDT of the blend are higher as compared to HDPE/Zn-SEPDM/ZnSt (zinc stearate).The effect of Zn-SEPDM on the compatibility the morphology and properties of IPP blends were studied by DSC, TEM and mechanical properties test. The results show that as Zn-SEPDM content exceeds 20%. Zn-SEPDM in the blend becomes continuous and an abrupt change in impact strength is incurred there from. Owing to the incorporation of ionic groups into EPDM.the strong interactions betWeen the chains make both the impact and the tensile strength of IPP remarkably higher