In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.A...In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.展开更多
The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array i...The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.展开更多
The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and...The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.展开更多
The distortion of the array shape is one of the main factors which result the performance degeneration from the ideal situation of towed line array (TLA). Based on the ordinary array shape distortion, the directivity ...The distortion of the array shape is one of the main factors which result the performance degeneration from the ideal situation of towed line array (TLA). Based on the ordinary array shape distortion, the directivity function of TLA is presented in this paper. An algorithm for precisely determning the coordinates of each element by means of the inverse elliptic function is derived. A fast approximation of recursive formula for solving distorted array shape is given. According to the comparison between ideal directivity and the directivity of distorted array, the criterion for making decision of operational mode of TLA sonar is presented. So that the performance prediction problem in TLA is solved. The results of system simulation in computer show a good agreement with the theoretical analysis.展开更多
The theoretical analysis and experimental research on Port/Starboard (P/S) discrimination in towed line array are proposed. Two methods resolving the P/S ambiguity with hydrophone triplets are introduced. By processi...The theoretical analysis and experimental research on Port/Starboard (P/S) discrimination in towed line array are proposed. Two methods resolving the P/S ambiguity with hydrophone triplets are introduced. By processing experimental data, the theoretical analysis is verified. The processing algorithm is extended to broadband signal. The research results show that the method based on optimum beamforming with triplets can be used to remove the port/starboard ambiguity. Also because of the simplicity of the method, it is expected to be implemented in practical towed line array sonar.展开更多
The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated u...The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional(2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.展开更多
基金Project supported by the National Defense Basic Science Research Program,China(Grant No.JCKY2016607C009)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2018025)。
文摘In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.
文摘The receiving response of towed line array to the noise radiated from the tow ship is investigated through normal mode modeling and computer simulation. The phenomenon that the maximum output of the towed line array is away from the endfire direction towards the tow ship is explained. The result is important for the understanding of the phenomenon and also for the application research concerning the suppression of the noise from the tow ship as well as adequate application of towed array techniques in shallow water.
基金supported by the National Natural Science Foundation of China(60532040,11374001)
文摘The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.
文摘The distortion of the array shape is one of the main factors which result the performance degeneration from the ideal situation of towed line array (TLA). Based on the ordinary array shape distortion, the directivity function of TLA is presented in this paper. An algorithm for precisely determning the coordinates of each element by means of the inverse elliptic function is derived. A fast approximation of recursive formula for solving distorted array shape is given. According to the comparison between ideal directivity and the directivity of distorted array, the criterion for making decision of operational mode of TLA sonar is presented. So that the performance prediction problem in TLA is solved. The results of system simulation in computer show a good agreement with the theoretical analysis.
文摘The theoretical analysis and experimental research on Port/Starboard (P/S) discrimination in towed line array are proposed. Two methods resolving the P/S ambiguity with hydrophone triplets are introduced. By processing experimental data, the theoretical analysis is verified. The processing algorithm is extended to broadband signal. The research results show that the method based on optimum beamforming with triplets can be used to remove the port/starboard ambiguity. Also because of the simplicity of the method, it is expected to be implemented in practical towed line array sonar.
基金National Key Research and Development Plan Project(No.2020YFB2010800)National Natural Science Foundation of China(Nos.61971307,61905175,51775377)。
文摘The small autonomous platform with a thin line array is an important tool for underwater acoustic mobile surveillance.Generally,only one-dimensional(1-D)direction-of-arrival(DOA)of the source signal can be estimated using a thin towed line array.In this work,the two-dimensional(2-D)DOA estimation is achieved by the thin line array towed by a small autonomous platform due to its flexible maneuver.Two perpendicular tow paths are formed through the fast turning of this array.An L-shaped array is formed by the same towed array on these two tow paths at different times.Using the array on these two straight paths,two 1-D DOAs of the source signal are obtained respectively,and then the 2-D DOA based on the formed L-shaped array can be estimated.The effectiveness of proposed approach is verified by numerical simulations and its theoretical error is analyzed.