波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出&qu...波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出"到相邻匹配滤波采样点这一信号模型,通过贝叶斯原理从观测的条件似然以及未知参数的先验分布获取待估计参数的后验概率分布,采用Markov Chain Monte Carlo(MCMC)方法中的Metropolis-Hastings(M-H)抽样算法联合估计目标与诱饵的相关参数,并根据拖曳式诱饵干扰对抗的特点对M-H抽样进行了改进。各种典型干扰条件及动态攻击场景下的仿真试验表明了本文方法的有效性。展开更多
文摘波束内目标与诱饵的参数估计是导引头正确实现目标分选、完成波束指向调整与精确跟踪的必要条件。目标与诱饵的"紧密接近"导致接收回波混叠,使得常规参数测量与估计方法失效。基于实际采样处理中目标回波能量会"溢出"到相邻匹配滤波采样点这一信号模型,通过贝叶斯原理从观测的条件似然以及未知参数的先验分布获取待估计参数的后验概率分布,采用Markov Chain Monte Carlo(MCMC)方法中的Metropolis-Hastings(M-H)抽样算法联合估计目标与诱饵的相关参数,并根据拖曳式诱饵干扰对抗的特点对M-H抽样进行了改进。各种典型干扰条件及动态攻击场景下的仿真试验表明了本文方法的有效性。