Drinking water sources in many African countries have been progressively degraded over the past decades. This degradation due to human activities leads to the proliferation of algae, especially toxin-producing cyanoba...Drinking water sources in many African countries have been progressively degraded over the past decades. This degradation due to human activities leads to the proliferation of algae, especially toxin-producing cyanobacteria. The presence of toxigenic algae in water has adverse consequences on human and animal health. This study aimed to determine the diversity and density of Cyanobacteria and Desmids and to identify toxin-producing cyanobacteria and environmental variables that influenced the structure of these groups of microalgae in the Loumbila reservoir in Burkina Faso located in the western part of Africa. Algal samples were collected and physico-chemical parameters were measured. Plankton species were observed under a light microscope and identified using standard methods. Species density was determined by cell counting using a Fuchs-Rosenthal chamber. Kruskal Wallis and Pearson correlation tests were performed using R software. A canonical analysis was performed using CANOCO software. In total, 205 algal species were inventoried, of which 83 species composed of 37 species of Cyanobacteria and 46 species of Desmids were identified. <em>Microcystis aeruginosa</em>, <em>Staurodesmus convergens </em>and <em>Cosmarium connatum </em>var <em>africanum</em> had the highest presence index respectively (100%, 83.333% and 77.77%). Among cyanobacteria species, toxin-producing species (30 species) and microcystin-producing species (28 species) had the highest number. In terms of species density, <em>Microcystis aeruginosa</em> was the most abundant species. The density of toxin-producing cyanobacteria was positively correlated (p < 0.05) with temperature, pH, dissolved oxygen, transparency, nitrates, and orthophosphates. However, at p < 0.05, desmids community was only correlated with dissolved oxygen, transparency, and conductivity. Furthermore, canonical analysis showed that temperature, dissolved oxygen, transparency, and orthophosphates influenced the density of both cyanobacteria and Desmids. These results reveal the high occurrence of toxin-producing cyanobacteria and certainly high toxins produced in the drinking water source. Basic tools should be developed for monitoring of cyanotoxins in drinking water sources and drinking water supplied to population to consider cyanotoxins during water treatment.展开更多
Clostridioides difficile is a leading cause of healthcare-associated infections,causing billions of economic losses every year.Its symptoms range from mild diarrhea to life-threatening damage to the colon.Transmission...Clostridioides difficile is a leading cause of healthcare-associated infections,causing billions of economic losses every year.Its symptoms range from mild diarrhea to life-threatening damage to the colon.Transmission and recurrence of c.difficile infection(CDl)are mediated by the metabolically dormant spores,while the virulence of C.difficile is mainly due to the two large clostridial toxins,TcdA and TcdB.Producing toxins or forming spores are two different strategies for C.difficile to cope with harsh environmental conditions.It is of great significance to understand the molecular mechanisms for C.difficile to skew to either of the cellular processes.Here,we summarize the current understanding of the regulation and connections between toxin production and sporulation in C.difficile and further discuss the potential solutions for yet-to-be-answered questions.展开更多
文摘Drinking water sources in many African countries have been progressively degraded over the past decades. This degradation due to human activities leads to the proliferation of algae, especially toxin-producing cyanobacteria. The presence of toxigenic algae in water has adverse consequences on human and animal health. This study aimed to determine the diversity and density of Cyanobacteria and Desmids and to identify toxin-producing cyanobacteria and environmental variables that influenced the structure of these groups of microalgae in the Loumbila reservoir in Burkina Faso located in the western part of Africa. Algal samples were collected and physico-chemical parameters were measured. Plankton species were observed under a light microscope and identified using standard methods. Species density was determined by cell counting using a Fuchs-Rosenthal chamber. Kruskal Wallis and Pearson correlation tests were performed using R software. A canonical analysis was performed using CANOCO software. In total, 205 algal species were inventoried, of which 83 species composed of 37 species of Cyanobacteria and 46 species of Desmids were identified. <em>Microcystis aeruginosa</em>, <em>Staurodesmus convergens </em>and <em>Cosmarium connatum </em>var <em>africanum</em> had the highest presence index respectively (100%, 83.333% and 77.77%). Among cyanobacteria species, toxin-producing species (30 species) and microcystin-producing species (28 species) had the highest number. In terms of species density, <em>Microcystis aeruginosa</em> was the most abundant species. The density of toxin-producing cyanobacteria was positively correlated (p < 0.05) with temperature, pH, dissolved oxygen, transparency, nitrates, and orthophosphates. However, at p < 0.05, desmids community was only correlated with dissolved oxygen, transparency, and conductivity. Furthermore, canonical analysis showed that temperature, dissolved oxygen, transparency, and orthophosphates influenced the density of both cyanobacteria and Desmids. These results reveal the high occurrence of toxin-producing cyanobacteria and certainly high toxins produced in the drinking water source. Basic tools should be developed for monitoring of cyanotoxins in drinking water sources and drinking water supplied to population to consider cyanotoxins during water treatment.
文摘Clostridioides difficile is a leading cause of healthcare-associated infections,causing billions of economic losses every year.Its symptoms range from mild diarrhea to life-threatening damage to the colon.Transmission and recurrence of c.difficile infection(CDl)are mediated by the metabolically dormant spores,while the virulence of C.difficile is mainly due to the two large clostridial toxins,TcdA and TcdB.Producing toxins or forming spores are two different strategies for C.difficile to cope with harsh environmental conditions.It is of great significance to understand the molecular mechanisms for C.difficile to skew to either of the cellular processes.Here,we summarize the current understanding of the regulation and connections between toxin production and sporulation in C.difficile and further discuss the potential solutions for yet-to-be-answered questions.