To promote the rational development and use of clean coal resources in China, data on the regional and age distribution of sulfur, arsenic and other harmful elements in Chinese coal was broadly collected, tested for c...To promote the rational development and use of clean coal resources in China, data on the regional and age distribution of sulfur, arsenic and other harmful elements in Chinese coal was broadly collected, tested for content, and analyzed. Coal in northwestern China is characterized by low to extremely low levels of sulfur; the coal of the Taiyuan Formation in northern China mainly has high-sulfur content; that of the Shanxi Formation is mainly characterized by low sulfur coal; and the Late Permian coal in southern China has overall higher sulfur content; other regions have low sulfur coal. The average content of harmful trace elements in the bulk of China's coal is similar to the corresponding content in the coal of the North America and the rest of the world, whereas the content of various elements (Hg, Sb and Se) is different in magnitude to the corresponding percentage in the crust. The average content of the elements Cr, Se, Co, Be, U, Br in Late Permian coal in S China ranks first in the country whereas the average content of Hg and CI in the coals of Late Carboniferous to Early Permian age in N China are the highest. The average content of Mn in Early and Middle Jurassic coal is higher in NW China. The high content of harmful elements in some coal should cause particular concern both in the development and utilization of coal.展开更多
The Southern Great Xing’an Range (SGXR) which forms part of the eastern segment of the Central Asian Orogenic Belt (CAOB) is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a ...The Southern Great Xing’an Range (SGXR) which forms part of the eastern segment of the Central Asian Orogenic Belt (CAOB) is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo (Cu),skarn Fe (Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn ±Cu ± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including (i) the early porphyry mineralization stage,(ii) main porphyry mineralization stage,(iii) transition mineralization stage,(iv) vein-type mineralization stage and (v) late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites: Py1 is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium- to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Py1 to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni (0.03-10.79,average 2.13) and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ^34SCDT values of Py1 (0.42‰-1.61‰,average 1.16‰),Py2 (-1.23‰ to 0.82‰,average 0.35‰),Py3 (-0.36‰ to 2.47‰,average 0.97‰),Py4 (2.51‰-3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit (-5‰ to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian (JurassiceCretaceous) magmatic-hydrothermal events.Variations of d34S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type PbeZn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.展开更多
Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its g...Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its growth controls and their geological implication are insufficiently understood.Integration of in-situ trace element and SIMS sulfur isotopes has revealed geochemical variations among these pyrite layers.These colloform pyrite occur as residual phases of core-rim aggregates,the cores are made up of very fine-grained anhedral pyrite particles,with some rims being made up of fine-grained and poorlycrystallized pyrite,while the other rims were featured with euhedral cubic pyrite.which are cemented by fine-grained calcite and/or dolomite with minor quartz.Sulfur isotope analysis shows that some wellpreserved rims have negative δ^34 S values(-28.12‰to-0.49‰),whereas most of the cores and rims have positive δ^34 S values(>0 to+44.28‰;peak at+14.91‰).Integrating with the methane and sulfate were observed in previous fluid inclusion study,we suggest that the 34 S depleted rims were initially formed by bacteria sulfate reduction(BSR),whereas the positive δ^34 S values were resulted from the sulfate reduction driven by anaerobic methane oxidation(AOM).The well-developed authigenic pyrite and calcite may also support the reaction of AOM.Combined with petrographic observations,trace element composition of the colloform pyrite reveals the incorporation and precipitation behavior of those high abundance elements in the pyrite:Pb and Zn were present as mineral inclusion and likely precipitated before Fe,as supported by the time-resolved Pb-Zn signal spikes in most of the analyzed pyrite grains.Other metals,such as Hg,Co and Ni,may have migrated as chloride complexes and entered the pyrite lattice.Arsenic and Sb,generally influenced by complex-forming reactions rather than substitution ones,could also enter the pyrite lattice,or slightly predate the precipitation of colloform pyrite as mineral inclusions,which are controlled by their hydrolysis constant in the ore fluids.The colloform pyrite may have grown inward from the rims.The successive BSR reaction process would enrich H^32/2S in the overlying water column but reduce the metal content,the nucleation of these pyrite rims was featured by strongly negative sulfur isotopes.The following AOM process should be activated by deformation like the turbidity sediment of the mudstone as the sulfide deposition are associated with fault activities that caused the emission of methane migration upward and simultaneously replenishing the metal in the column.The higher AOM reaction rate and the higher metal supply(not only Fe.but with minor other metals such as Pb and Zn) caused by sediment movement enhanced the metal concentration within the pyrite lattice.展开更多
采用大气预浓缩仪-GC/FPD建立了环境空气中7种含硫化合物的测定方法。结果表明,经惰性化改造后的大气预浓缩仪-GC/FPD测定系统的基线低,对硫化物无残留。7种化合物的线性回归方程的相关系数均在0.995以上,高、中、低3种浓度的空白加标...采用大气预浓缩仪-GC/FPD建立了环境空气中7种含硫化合物的测定方法。结果表明,经惰性化改造后的大气预浓缩仪-GC/FPD测定系统的基线低,对硫化物无残留。7种化合物的线性回归方程的相关系数均在0.995以上,高、中、低3种浓度的空白加标回收率分别为98.6%-105.3%、99.1%-103.7%、85.7%-99.7%,除硫化氢的相对标准偏差为10.9%外,其余6种含硫化合物的相对标准偏差可控制在6.9%以内。当进样体积为400 m L时,方法的检出限在0.10-1.1 ng/m^3。CO2、H2O对实际样品的测定无干扰。因此,该方法能够满足目前监测工作的要求,更加适用于环境空气中痕量含硫化合物的测定。展开更多
文摘To promote the rational development and use of clean coal resources in China, data on the regional and age distribution of sulfur, arsenic and other harmful elements in Chinese coal was broadly collected, tested for content, and analyzed. Coal in northwestern China is characterized by low to extremely low levels of sulfur; the coal of the Taiyuan Formation in northern China mainly has high-sulfur content; that of the Shanxi Formation is mainly characterized by low sulfur coal; and the Late Permian coal in southern China has overall higher sulfur content; other regions have low sulfur coal. The average content of harmful trace elements in the bulk of China's coal is similar to the corresponding content in the coal of the North America and the rest of the world, whereas the content of various elements (Hg, Sb and Se) is different in magnitude to the corresponding percentage in the crust. The average content of the elements Cr, Se, Co, Be, U, Br in Late Permian coal in S China ranks first in the country whereas the average content of Hg and CI in the coals of Late Carboniferous to Early Permian age in N China are the highest. The average content of Mn in Early and Middle Jurassic coal is higher in NW China. The high content of harmful elements in some coal should cause particular concern both in the development and utilization of coal.
基金financially supported by National Key Research and Development Program of China (2016YFC0600504)Fundamental Research Funds for the Central Universities (2652017218)
文摘The Southern Great Xing’an Range (SGXR) which forms part of the eastern segment of the Central Asian Orogenic Belt (CAOB) is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo (Cu),skarn Fe (Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn ±Cu ± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including (i) the early porphyry mineralization stage,(ii) main porphyry mineralization stage,(iii) transition mineralization stage,(iv) vein-type mineralization stage and (v) late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites: Py1 is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium- to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Py1 to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni (0.03-10.79,average 2.13) and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ^34SCDT values of Py1 (0.42‰-1.61‰,average 1.16‰),Py2 (-1.23‰ to 0.82‰,average 0.35‰),Py3 (-0.36‰ to 2.47‰,average 0.97‰),Py4 (2.51‰-3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit (-5‰ to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian (JurassiceCretaceous) magmatic-hydrothermal events.Variations of d34S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type PbeZn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41702067 and 41602067)National Key Research and Development Program of China(Grant No.2018YFC0603603)+1 种基金Natural Science Foundation of Guangdong Province(Grant No.2017A0303113246)the Fundamental Research Funds for the Central Universities(171gpy63 and 181gpy25)
文摘Colloform pyrite with core-rim texture is commonly deposited in carbonate platforms associated with the sulfide ores such as the Caixiashan Pb-Zn deposit.However,the genesis of colloform pyrite in Pb-Zn deposits,its growth controls and their geological implication are insufficiently understood.Integration of in-situ trace element and SIMS sulfur isotopes has revealed geochemical variations among these pyrite layers.These colloform pyrite occur as residual phases of core-rim aggregates,the cores are made up of very fine-grained anhedral pyrite particles,with some rims being made up of fine-grained and poorlycrystallized pyrite,while the other rims were featured with euhedral cubic pyrite.which are cemented by fine-grained calcite and/or dolomite with minor quartz.Sulfur isotope analysis shows that some wellpreserved rims have negative δ^34 S values(-28.12‰to-0.49‰),whereas most of the cores and rims have positive δ^34 S values(>0 to+44.28‰;peak at+14.91‰).Integrating with the methane and sulfate were observed in previous fluid inclusion study,we suggest that the 34 S depleted rims were initially formed by bacteria sulfate reduction(BSR),whereas the positive δ^34 S values were resulted from the sulfate reduction driven by anaerobic methane oxidation(AOM).The well-developed authigenic pyrite and calcite may also support the reaction of AOM.Combined with petrographic observations,trace element composition of the colloform pyrite reveals the incorporation and precipitation behavior of those high abundance elements in the pyrite:Pb and Zn were present as mineral inclusion and likely precipitated before Fe,as supported by the time-resolved Pb-Zn signal spikes in most of the analyzed pyrite grains.Other metals,such as Hg,Co and Ni,may have migrated as chloride complexes and entered the pyrite lattice.Arsenic and Sb,generally influenced by complex-forming reactions rather than substitution ones,could also enter the pyrite lattice,or slightly predate the precipitation of colloform pyrite as mineral inclusions,which are controlled by their hydrolysis constant in the ore fluids.The colloform pyrite may have grown inward from the rims.The successive BSR reaction process would enrich H^32/2S in the overlying water column but reduce the metal content,the nucleation of these pyrite rims was featured by strongly negative sulfur isotopes.The following AOM process should be activated by deformation like the turbidity sediment of the mudstone as the sulfide deposition are associated with fault activities that caused the emission of methane migration upward and simultaneously replenishing the metal in the column.The higher AOM reaction rate and the higher metal supply(not only Fe.but with minor other metals such as Pb and Zn) caused by sediment movement enhanced the metal concentration within the pyrite lattice.
文摘采用大气预浓缩仪-GC/FPD建立了环境空气中7种含硫化合物的测定方法。结果表明,经惰性化改造后的大气预浓缩仪-GC/FPD测定系统的基线低,对硫化物无残留。7种化合物的线性回归方程的相关系数均在0.995以上,高、中、低3种浓度的空白加标回收率分别为98.6%-105.3%、99.1%-103.7%、85.7%-99.7%,除硫化氢的相对标准偏差为10.9%外,其余6种含硫化合物的相对标准偏差可控制在6.9%以内。当进样体积为400 m L时,方法的检出限在0.10-1.1 ng/m^3。CO2、H2O对实际样品的测定无干扰。因此,该方法能够满足目前监测工作的要求,更加适用于环境空气中痕量含硫化合物的测定。