期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Stable Transition of Quadruped Rhythmic Motion Using the Tracking Differentiator 被引量:1
1
作者 Xiaoqi Li Wei Wang Jianqiang Yi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第5期9-16,共8页
Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required t... Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required to lower the height of center of gravity( COG) to enhance the stability and maneuverability. To properly handle these situations,a quadruped controller based on the central pattern generator( CPG) model,the discrete tracking differentiator( TD) and proportional-derivative( PD) sub-controllers is presented. The CPG is used to generate basic rhythmic motion for the quadruped robot. The discrete TD is not only creatively employed to implement the transition between two different rhythmic medium values of the CPG which results in the adjustment of the height of COG of the quadruped robot,but also modified to control the transition duration which enables the quadruped robot to achieve the stable transition. Additionally,two specific PD sub-controllers are constructed to adjust the oscillation amplitude of the CPG,so as to avoid the severe deviation in the transverse direction during transition locomotion. Finally,the controller is validated on a quadruped model. A tunnel with variable height is built for the quadruped model to travel through. The simulation demonstrates the severe deviation without the PD sub-controllers,and the reduced deviation with the PD sub-controllers. 展开更多
关键词 quadruped robot center of gravity central pattern generator discrete tracking differentiator proportional-derivative sub-controller
下载PDF
On a novel tracking differentiator design based on iterative learning in a moving window
2
作者 Xiangyang Li Rafal Madonski +1 位作者 Zhiqiang Gao Senping Tian 《Control Theory and Technology》 EI CSCD 2023年第1期46-55,共10页
Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The prac... Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD. 展开更多
关键词 tracking differentiator(TD) Iterative learning Iterative learning tracking differentiator(IL-TD) Active disturbance rejection control(ADRC)-Two-dimensional system(2-D system)
原文传递
Non-Negative Adaptive Mechanism-Based Sliding Mode Control for Parallel Manipulators with Uncertainties
3
作者 Van-Truong Nguyen 《Computers, Materials & Continua》 SCIE EI 2023年第2期2771-2787,共17页
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators... In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method. 展开更多
关键词 Parallel manipulator uncertainties and disturbances nonsingular fast terminal sliding mode control non-negative adaptive mechanism tracking differentiator
下载PDF
ADRC based control for a class of input time delay systems 被引量:5
4
作者 Dongyang Zhang Xiaolan Yao +1 位作者 Qinghe Wu Zhuoyue Song 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1210-1220,共11页
This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-fo... This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design. 展开更多
关键词 time-delay system feed-forward compensation active disturbance rejection control(FFC-ADRC) tracking differentiator(TD) Lyapunov theory bound-input-bound-output(BIBO) stability
下载PDF
Flow-rate Characteristics Measurement of Regulators Based on the Pressure Response in an Isothermal Tank 被引量:1
5
作者 FAN Wei ZHANG Hongli +2 位作者 WANG Tao PENG Guangzheng ONEYAMA Naotake 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期633-638,共6页
Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, ... Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, which describe the flow-rate characteristics measurement method of pneumatic regulators, the pressure and the flow are measured point by point, and then the flow-rate characteristics curve is plotted point to point. This method has some disadvantages, such as equipment complexity, much air consumption, and low efficiency. To settle the problems presented above, this paper puts forward a new high efficient and energy saving flow-rate characteristics measurement method of regulators, which is based on the pressure response when charging and discharging to an isothermal tank without any flow meters. The measurement principle, the system and the steps are introduced. And the tracking differentiator is used for the data processing of the pressure difference. Two typical kinds of regulators were experimentally investigated, and their flow-rate characteristics curves were obtained with the new and the conventional method, respectively. Comparatively, it's proved that this new method is feasible because it is not only able to meet the demand of the measurement precision, but also to save energy and improve efficiency. Compared to the conventional method, the new method takes only about 1/10 amount of time and consumes about only 1/30 amount of air. Hopefully it will be able to serve as an international standard of flow-rate characteristics measurement method of regulators. 展开更多
关键词 regulator flow-rate characteristics isothermal tank charging and discharging once pressure response tracking differentiator energy saving and high efficiency
下载PDF
Prescribed fast tracking control for flexible air-breathing hypersonic vehicles:An event-triggered case 被引量:2
6
作者 Xingling SHAO Yi SHI +1 位作者 Wendong ZHANG Jiang ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期200-215,共16页
In this paper,a prescribed fast tracking control scheme is proposed for Flexible Airbreathing Hypersonic Vehicles(FAHV)subject to lumped disturbances and limited resources.To maintain tracking errors of velocity and a... In this paper,a prescribed fast tracking control scheme is proposed for Flexible Airbreathing Hypersonic Vehicles(FAHV)subject to lumped disturbances and limited resources.To maintain tracking errors of velocity and altitude converge to a predefined region with a prescribed time and release the transient intense fluctuations encountered in classical Prescribed Performance Control(PPC)using a fast decaying rate,a tracking differentiator-based PPC is presented,where the reaching time and the maximum time differentiation of preselected envelopes can be regulated as a prior via fixing an acceleration factor,so that a guaranteed fast convergence speed can be realized with reduced oscillations.Besides,to avoid the excessive occupation of limited resources(energy and communication)and guarantee a remarkable tracking accuracy,switching event-triggered mechanisms are constructed for FAHV control realization,which provide a promising way to pursue a desired level of tracking performance with a low energy consumption.Subsequently,Uncertainty and Disturbance Estimators(UDE)and Sigmoid function-based Tracking Differentiators(STD)are employed to provide disturbance estimation and reference derivation with a low computational complexity.Finally,robust control laws are designed to compensate for the sampling error induced by event-triggered conditions,meanwhile Zeno phenomena can be effectively eliminated.The simulation results and comparisons validate the effectiveness of the proposed scheme. 展开更多
关键词 Flexible air-breathing hypersonic vehicle Prescribed performance control Switching event-triggered tracking differentiator Uncertainty and disturbance estimator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部