In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,inc...In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.展开更多
In view of the difficulties in weeding and plant protection in the middle and late period of maize planting,this paper proposed a self-propelled thermal fogger chassis.According to the theoretical calculation and agro...In view of the difficulties in weeding and plant protection in the middle and late period of maize planting,this paper proposed a self-propelled thermal fogger chassis.According to the theoretical calculation and agronomic requirements for maize planting,the structure and working principles of the self-propelled thermal fogger chassis were introduced.On this basis,the multi-body dynamics model of chassis structure was established,and the chassis traction,steering and obstacle surmounting performances were also analyzed.Then the rationality and the feasibility of the design were verified through the furrow running test and test equipped with thermal fogger.Test results showed that,the traction performance improves with the decrease of soil deformation index and increase of cohesion,and when track pre-tensioning force was about 1000 N,the machine had a good traction performance;with the decrease of the soil deformation index and the increase of cohesive force,the stability of the single side brake turn of the chassis becomes better;on the contrary,with the increase of the tightness of the crawler,the steering radius turns smaller and the steering stability becomes worse.Under heavy clay,with the pre-tensioning of 1000 N,the machine has better steering stability and smaller turning radius.The obstacle-surmounting simulation result shows that on sandy soil road,the maximum climbing angle for the chassis is 42°,the height of vertical obstacle crossing is 170 mm and the trench width is 440 mm.The study provides a reference for the design of plant protection machinery in the middle and late stages of maize planting.展开更多
The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on ...The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on electric vehicles,and electric agricultural machinery draw much less attention.Therefore,a method of powertrain parameter matching and optimization design for electric tractor was proposed in this paper,which was based on dual-motor coupling drive mode.The particle swarm optimization(PSO)algorithm based on mixed penalty function was used for parameter optimization.Parameter optimization design was programmed using MATLAB.A simulation dynamic model with optimization design variables of electric tractor powertrain was established based on MATLAB/Simulink.Compared with the simulation results before optimization,the objective functions were optimized and the traction performance of electric tractor was improved,which indicated the effectiveness of the proposed method.展开更多
基金supported by the National Key Research and Development Plan of China(2022YFD2001201)the Beijing Postdoctoral Research Foundation(2023-ZZ-112)+1 种基金the National Natural Science Foundation of China(52272444)the Natural Science Foundation of Jiangsu Province(BK20230548).
文摘In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.
基金This research was financially supported by the Special Fund of Ministry of Agriculture of China for Public Welfare Projects(No.201503136)Natural Science Fund Project in Anhui Province(No.1708085ME135)Natural Science Major Project in Anhui Province(No.KJ2018ZD016).
文摘In view of the difficulties in weeding and plant protection in the middle and late period of maize planting,this paper proposed a self-propelled thermal fogger chassis.According to the theoretical calculation and agronomic requirements for maize planting,the structure and working principles of the self-propelled thermal fogger chassis were introduced.On this basis,the multi-body dynamics model of chassis structure was established,and the chassis traction,steering and obstacle surmounting performances were also analyzed.Then the rationality and the feasibility of the design were verified through the furrow running test and test equipped with thermal fogger.Test results showed that,the traction performance improves with the decrease of soil deformation index and increase of cohesion,and when track pre-tensioning force was about 1000 N,the machine had a good traction performance;with the decrease of the soil deformation index and the increase of cohesive force,the stability of the single side brake turn of the chassis becomes better;on the contrary,with the increase of the tightness of the crawler,the steering radius turns smaller and the steering stability becomes worse.Under heavy clay,with the pre-tensioning of 1000 N,the machine has better steering stability and smaller turning radius.The obstacle-surmounting simulation result shows that on sandy soil road,the maximum climbing angle for the chassis is 42°,the height of vertical obstacle crossing is 170 mm and the trench width is 440 mm.The study provides a reference for the design of plant protection machinery in the middle and late stages of maize planting.
基金We acknowledge that this working was financially supported by the Thirteenth Five-Year National Key R&D Plan(2016YFD0701001).
文摘The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on electric vehicles,and electric agricultural machinery draw much less attention.Therefore,a method of powertrain parameter matching and optimization design for electric tractor was proposed in this paper,which was based on dual-motor coupling drive mode.The particle swarm optimization(PSO)algorithm based on mixed penalty function was used for parameter optimization.Parameter optimization design was programmed using MATLAB.A simulation dynamic model with optimization design variables of electric tractor powertrain was established based on MATLAB/Simulink.Compared with the simulation results before optimization,the objective functions were optimized and the traction performance of electric tractor was improved,which indicated the effectiveness of the proposed method.