Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of the...Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of them are based on safety guidelines published by international expert groups. In this paper, electric and magnetic fields are calculated in the vicinity of 25 kV traction line supplying railway traction systems. Calculation results are compared to exposure limits specified by safety guidelines and regulations. Possible countermeasures for reduction of electromagnetic fields are proposed. Also, this paper presents a method for calculation of the induced voltages to an underground gas pipeline from a neighbouring 25 kV electric traction overhead line in case of short circuit. Calculations are performed with EMTP-ATP software. Possible countermeasures for reduction of induced voltages are proposed.展开更多
High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their saf...High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their safety and reliability has become more imperative.As the core component of HST,the reliability of the traction system has a substantially influence on the train.During the long-term operation of HSTs,the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures,thus threatening the running safety of the train.Therefore,performing fault monitoring and diagnosis on the traction system of the HST is necessary.In recent years,machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis.Machine learning has made considerably advancements in traction system fault diagnosis;however,a comprehensive systematic review is still lacking in this field.This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint.First,the structure and function of the HST traction system are briefly introduced.Then,the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed.Finally,the challenges for accurate fault diagnosis under actual operating conditions are revealed,and the future research trends of machine learning in traction systems are discussed.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
In the past few decades,high-speed trains have witnessed tremendous and vigorous development with the appearance of the oil crisis and industrialization,which became a significant trend in the transportation industry ...In the past few decades,high-speed trains have witnessed tremendous and vigorous development with the appearance of the oil crisis and industrialization,which became a significant trend in the transportation industry the world over.With the increase of high-speed railway mileage,the amount of high-speed train has grown sharply,the service life of the trains has increased gradually and the components of the vehicle traction system have become worn and aged as a result.Therefore,advanced maintenance technology and its application are key factors to reduce maintenance cost,human resource input and ensure safe,stable and reliable operation of trains.This paper summarizes and discusses the development,application mode,maintenance management and maintenance technology of high-speed railways of the major countries in the world,especially discusses the condition-based maintenance and the key technology of the traction electrical system,and offers the prospect of research direction and the development of traction maintenance technology.展开更多
Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes,which significantly affects the comfort and safety of high-speed elevators.Therefore,vibration of the elevator has a...Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes,which significantly affects the comfort and safety of high-speed elevators.Therefore,vibration of the elevator has always been a topic of research interest.This paper presents a theoretical model for analyzing the tension–torsion coupling vibration of the time-varying elevator traction system.The constitutive relations with the tension–torsion coupling effect of the wire rope are reduced by analyzing the deformation mechanism of the spiral winding wire rope.Based on Hamilton’s principle,the equations of motion and corresponding boundary conditions for the tension–torsion coupling vibration of the elevator traction system are derived.The Galerkin method is employed to account for the influence of nonlinear boundary conditions and to transform the equations of motion into discrete ones with variable coefficients of time,which are solved using the Newmark-βmethod.The accuracy of the proposed model is justified by the good agreement between theoretical predictions and experimental results,following which,the influence of the operation status and structural parameters of the elevator traction system on its vibration performance is discussed in detail.展开更多
A health status assessment method based on cross entropy and support vector machine(SVM)is proposed for the new urban rail vehicle traction systems.First,an index system for health assessment of the traction system is...A health status assessment method based on cross entropy and support vector machine(SVM)is proposed for the new urban rail vehicle traction systems.First,an index system for health assessment of the traction system is established,and combined weights of the index layer are obtained via cross entropy.Then,an SVM assessment model considering actual operating data and each status level of the traction system is established.Finally,the model is simulated in Matlab to obtain assessment results.The results indicate that the proposed method can provide the health status information of the traction system intuitively and complete the health status assessment of the traction system of the new urban rail vehicle effectively,by exploiting the traction system’s layered analysis model.The health status can be assessed accurately and reliably by adopting the cross entropy theory and SVM theory.展开更多
Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control...Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control periods. The initial output of the TCS (referred to as the torque base in this paper), which has a great impact on the driving performance of the vehicle in early cycles, remains to be investigated. In order to improve the control performance of the TCS in the first several cycles, an algorithm is proposed to determine the torque base. First, torque bases are calculated by two different methods, one based on states judgment and the other based on the vehicle dynamics. The confidence level of the torque base calculated based on the vehicle dynamics is also obtained. The final torque base is then determined based on the two torque bases and the confidence level. Hardware-in-the-loop(HIL) simulation and vehicle tests emulating sudden start on low friction roads have been conducted to verify the proposed algorithm. The control performance of a PID-controlled TCS with and without the proposed torque base algorithm is compared, showing that the proposed algorithm improves the performance of the TCS over the first several cycles and enhances about 5% vehicle speed by contrast. The proposed research provides a more proper initial value for TCS control, and improves the performance of the first several control cycles of the TCS.展开更多
Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
With the development of high-speed railway and heavy-haul rail transport in China,a large number of new types of electric locomotives and electric multiple units have been put into operation,improving the efficiency a...With the development of high-speed railway and heavy-haul rail transport in China,a large number of new types of electric locomotives and electric multiple units have been put into operation,improving the efficiency and equipment quality of railway transportation.However,harmonics emitted from the traction system and locomotives often interfere with the railway signalling equipment,which can lead to critical malfunction of the equipment.Based on field test data,this paper analyses the interference coupling mechanism and magnitude of traction harmonics to the signalling equipment using a three-element method of interference.It examines the three essential elements of electromagnetic interference,studies harmonic mitigation measures and proposes to solve the problem of inteference with signalling equipment by installing a passive high-pass filter in the coupling path.After comparing the effects of several types of filters using simulation tests,this paper verified the validity of the method and concluded that a second-order passive filter is the optimal solution for harmonic interference mitigation.展开更多
Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tas...Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment.To address this problem,this paper introduces a preventive opportunistic maintenance(POM)method for TPSS based on equipment reliability.Firstly,a POM model is established by considering the equipment reliability degradation process based on Weibull distribution.Then,by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective,the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies.The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer,circuit breaker and disconnector in an actual TPSS of a railway administration.Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS.It can improve maintenance efficiency and reduce power outage time,providing guidance to formulate scientific maintenance strategies for TPSS.展开更多
Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail tra...To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.展开更多
The development of train technology is mainly reflected in the development of the traction system.The train traction system includes several key pieces of equipment,such as the pantograph,traction transformer,traction...The development of train technology is mainly reflected in the development of the traction system.The train traction system includes several key pieces of equipment,such as the pantograph,traction transformer,traction converter and traction motor.It determines the performance of train start,acceleration,constant speed operation and braking.展开更多
The traction motor of electric vehicle is differing from the general industry traction motor completely. Not only frequently start, parking, accelerate, decelerate and low speed, but also high torque in climbing slope...The traction motor of electric vehicle is differing from the general industry traction motor completely. Not only frequently start, parking, accelerate, decelerate and low speed, but also high torque in climbing slope, low torque in high speed and wide range speed are requested. Base on the theory of sound intensi- ty, the experiment of noise are study through the measurement at discrete points. The sizing grid is 10mm × 10mm, The sound intensity map of traction motor are protracted at 1000r/min and the result show that the main noise sources are fan, gear-box and the traction motor in turn.展开更多
This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accuratel...This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accurately the machine's inherent cooling capacity when the train is running,the ambient airflow and the related heat transfer coefficient(HTC)are numerically investigated considering synchronously the bogie installation structure.The machine is preliminary cooled with air ducts set on the motor shell,and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated.During simulations,the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement.To reduce the temperature rise and thus guarantee the motor's working reliability,an internal self-circulated air cooling system is proposed according to the machine temperature distribution.The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions.The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system.展开更多
Because the leakage protection circuit in traction motor of coal mining machine is impacted by frequency converter devices,malfunctions appear frequently.This paper makes an in-depth analysis,proposes a solution of us...Because the leakage protection circuit in traction motor of coal mining machine is impacted by frequency converter devices,malfunctions appear frequently.This paper makes an in-depth analysis,proposes a solution of using the subtraction circuit to offset interference signals and conducts a simulation analysis.The above scheme,which is simple and easily realized,can improve the reliability of leakage protection device in traction motor.展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
文摘Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of them are based on safety guidelines published by international expert groups. In this paper, electric and magnetic fields are calculated in the vicinity of 25 kV traction line supplying railway traction systems. Calculation results are compared to exposure limits specified by safety guidelines and regulations. Possible countermeasures for reduction of electromagnetic fields are proposed. Also, this paper presents a method for calculation of the induced voltages to an underground gas pipeline from a neighbouring 25 kV electric traction overhead line in case of short circuit. Calculations are performed with EMTP-ATP software. Possible countermeasures for reduction of induced voltages are proposed.
基金supported by the National Natural Science Foundation of China(Grant No.71731008)the Beijing Municipal Natural Science Foundation-Rail Transit Joint Research Program(Grant No.L191022)the Zhibo Lucchini Railway Equipment Co.,Ltd.
文摘High-speed trains(HSTs)have the advantages of comfort,efficiency,and convenience and have gradually become the mainstream means of transportation.As the operating scale of HSTs continues to increase,ensuring their safety and reliability has become more imperative.As the core component of HST,the reliability of the traction system has a substantially influence on the train.During the long-term operation of HSTs,the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures,thus threatening the running safety of the train.Therefore,performing fault monitoring and diagnosis on the traction system of the HST is necessary.In recent years,machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis.Machine learning has made considerably advancements in traction system fault diagnosis;however,a comprehensive systematic review is still lacking in this field.This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint.First,the structure and function of the HST traction system are briefly introduced.Then,the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed.Finally,the challenges for accurate fault diagnosis under actual operating conditions are revealed,and the future research trends of machine learning in traction systems are discussed.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘In the past few decades,high-speed trains have witnessed tremendous and vigorous development with the appearance of the oil crisis and industrialization,which became a significant trend in the transportation industry the world over.With the increase of high-speed railway mileage,the amount of high-speed train has grown sharply,the service life of the trains has increased gradually and the components of the vehicle traction system have become worn and aged as a result.Therefore,advanced maintenance technology and its application are key factors to reduce maintenance cost,human resource input and ensure safe,stable and reliable operation of trains.This paper summarizes and discusses the development,application mode,maintenance management and maintenance technology of high-speed railways of the major countries in the world,especially discusses the condition-based maintenance and the key technology of the traction electrical system,and offers the prospect of research direction and the development of traction maintenance technology.
基金supported by the Guangdong Natural Science Foundation(No.2021A1515012037).
文摘Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes,which significantly affects the comfort and safety of high-speed elevators.Therefore,vibration of the elevator has always been a topic of research interest.This paper presents a theoretical model for analyzing the tension–torsion coupling vibration of the time-varying elevator traction system.The constitutive relations with the tension–torsion coupling effect of the wire rope are reduced by analyzing the deformation mechanism of the spiral winding wire rope.Based on Hamilton’s principle,the equations of motion and corresponding boundary conditions for the tension–torsion coupling vibration of the elevator traction system are derived.The Galerkin method is employed to account for the influence of nonlinear boundary conditions and to transform the equations of motion into discrete ones with variable coefficients of time,which are solved using the Newmark-βmethod.The accuracy of the proposed model is justified by the good agreement between theoretical predictions and experimental results,following which,the influence of the operation status and structural parameters of the elevator traction system on its vibration performance is discussed in detail.
基金Supported by the Basic Ability Improvement Project for Young and Middle-aged Teachers in Guangxi Province(2018KY1159).
文摘A health status assessment method based on cross entropy and support vector machine(SVM)is proposed for the new urban rail vehicle traction systems.First,an index system for health assessment of the traction system is established,and combined weights of the index layer are obtained via cross entropy.Then,an SVM assessment model considering actual operating data and each status level of the traction system is established.Finally,the model is simulated in Matlab to obtain assessment results.The results indicate that the proposed method can provide the health status information of the traction system intuitively and complete the health status assessment of the traction system of the new urban rail vehicle effectively,by exploiting the traction system’s layered analysis model.The health status can be assessed accurately and reliably by adopting the cross entropy theory and SVM theory.
基金supported by National Natural Science Foundation of China(Grant Nos. 50905092, 51275557)Open Foundation of State Key Laboratory of Automotive Safety and Energy(Grant Nos. zz2011-052, zz2011-021)
文摘Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control periods. The initial output of the TCS (referred to as the torque base in this paper), which has a great impact on the driving performance of the vehicle in early cycles, remains to be investigated. In order to improve the control performance of the TCS in the first several cycles, an algorithm is proposed to determine the torque base. First, torque bases are calculated by two different methods, one based on states judgment and the other based on the vehicle dynamics. The confidence level of the torque base calculated based on the vehicle dynamics is also obtained. The final torque base is then determined based on the two torque bases and the confidence level. Hardware-in-the-loop(HIL) simulation and vehicle tests emulating sudden start on low friction roads have been conducted to verify the proposed algorithm. The control performance of a PID-controlled TCS with and without the proposed torque base algorithm is compared, showing that the proposed algorithm improves the performance of the TCS over the first several cycles and enhances about 5% vehicle speed by contrast. The proposed research provides a more proper initial value for TCS control, and improves the performance of the first several control cycles of the TCS.
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
文摘With the development of high-speed railway and heavy-haul rail transport in China,a large number of new types of electric locomotives and electric multiple units have been put into operation,improving the efficiency and equipment quality of railway transportation.However,harmonics emitted from the traction system and locomotives often interfere with the railway signalling equipment,which can lead to critical malfunction of the equipment.Based on field test data,this paper analyses the interference coupling mechanism and magnitude of traction harmonics to the signalling equipment using a three-element method of interference.It examines the three essential elements of electromagnetic interference,studies harmonic mitigation measures and proposes to solve the problem of inteference with signalling equipment by installing a passive high-pass filter in the coupling path.After comparing the effects of several types of filters using simulation tests,this paper verified the validity of the method and concluded that a second-order passive filter is the optimal solution for harmonic interference mitigation.
基金the National Natural Science Foundation of China under Grant(51907166)the Science and Technology Project of CHINA RAILWAY under Grant(2017J001-F&N2018G023)the Sichuan Science and Technology Program under Grant(2018GZ0020).
文摘Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment.To address this problem,this paper introduces a preventive opportunistic maintenance(POM)method for TPSS based on equipment reliability.Firstly,a POM model is established by considering the equipment reliability degradation process based on Weibull distribution.Then,by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective,the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies.The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer,circuit breaker and disconnector in an actual TPSS of a railway administration.Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS.It can improve maintenance efficiency and reduce power outage time,providing guidance to formulate scientific maintenance strategies for TPSS.
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
文摘To avoid stray current and maintain the benefit of no phase-split in the DC traction power supply system, an AC traction power supply system was proposed for the urban public transport such as metro and light rail transit. The proposed system consists of a main substation (MSS) and cable traction network (CTN). The MSS includes a single-phase main traction transformer and a negative-se- quence compensation device, while the CTN includes double-core cables, traction transformers, overhead catenary system, rails, etc. Several key techniques for the proposed system were put forward and discussed, which can be summarized as (1) the power supply principle, equivalent circuit and transmission ability of the CTN, the cable-catenary matching technique, and the selection of catenary voltage level; (2) the segmentation technology and status identification method for traction power supply network, distributed and centralized protection schemes, etc.; (3) a power supply scheme for single-line MSS and a power supply scheme of MSS shared by two or more lines. The proposed industrial frequency single-phase AC traction power supply system shows an excellent technical performance, good economy, and high reliability, hence provides a new alternative for metro and urban rail transit power supply systems.
文摘The development of train technology is mainly reflected in the development of the traction system.The train traction system includes several key pieces of equipment,such as the pantograph,traction transformer,traction converter and traction motor.It determines the performance of train start,acceleration,constant speed operation and braking.
基金Supported by the National High Technology Research and Development Programme of China (No. 2007AA11A105), the National Natural Science Foundation of China ( No. 60974063).
文摘The traction motor of electric vehicle is differing from the general industry traction motor completely. Not only frequently start, parking, accelerate, decelerate and low speed, but also high torque in climbing slope, low torque in high speed and wide range speed are requested. Base on the theory of sound intensi- ty, the experiment of noise are study through the measurement at discrete points. The sizing grid is 10mm × 10mm, The sound intensity map of traction motor are protracted at 1000r/min and the result show that the main noise sources are fan, gear-box and the traction motor in turn.
基金supported by the National Natural Science Foundation of China under Grant 52107007the China Scholarship Council under Grant 202008120084the“Chunhui Plan”Collaborative Research Project of Chinese Ministry of Education under Grant HZKY20220604。
文摘This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accurately the machine's inherent cooling capacity when the train is running,the ambient airflow and the related heat transfer coefficient(HTC)are numerically investigated considering synchronously the bogie installation structure.The machine is preliminary cooled with air ducts set on the motor shell,and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated.During simulations,the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement.To reduce the temperature rise and thus guarantee the motor's working reliability,an internal self-circulated air cooling system is proposed according to the machine temperature distribution.The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions.The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system.
文摘Because the leakage protection circuit in traction motor of coal mining machine is impacted by frequency converter devices,malfunctions appear frequently.This paper makes an in-depth analysis,proposes a solution of using the subtraction circuit to offset interference signals and conducts a simulation analysis.The above scheme,which is simple and easily realized,can improve the reliability of leakage protection device in traction motor.