In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train ...In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.展开更多
Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question rega...Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’bala...Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.展开更多
In order to satisfy the safety-critical requirements,the train control system(TCS) often employs a layered safety communication protocol to provide reliable services.However,both description and verification of the sa...In order to satisfy the safety-critical requirements,the train control system(TCS) often employs a layered safety communication protocol to provide reliable services.However,both description and verification of the safety protocols may be formidable due to the system complexity.In this paper,interface automata(IA) are used to describe the safety service interface behaviors of safety communication protocol.A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN.A case study of using this method to describe and verify a safety communication protocol is included.The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks,livelocks and several mandatory consistency properties.A prototype of safety protocols is also developed based on the presented formally verifying method.展开更多
This paper proposes to adopt SCADA and PLC technology for the improvement of the performance of real time signaling&train control systems in metro railways.The main concern of this paper is to minimize the failure...This paper proposes to adopt SCADA and PLC technology for the improvement of the performance of real time signaling&train control systems in metro railways.The main concern of this paper is to minimize the failure in automated metro railways system operator and integrate the information coming from Operational Control Centre(OCC),traction SCADA system,traction power control,and power supply system.This work presents a simulated prototype of an automated metro train system operator that uses PLC and SCADA for the real time monitoring and control of the metro railway systems.Here,SCADA is used for the visualization of an automated process operation and then the whole opera-tion is regulated with the help of PLC.The PLC used in this process is OMRON(NX1P2-9024DT1)and OMRON’s Sysmac studio programming software is used for developing the ladder logic of PLC.The metro railways system has deployed infrastructure based on SCADA from the power supply system,and each station’s traction power control is connected to the OCC remotely which commands all of the stations and has the highest command priority.An alarm is triggered in the event of an emergency or system congestion.This proposed system overcomes the drawbacks of the current centralized automatic train control(CATC)system.This system provides prominent benefits like augmenting services which may enhance a network’s full load capacity and networkflexibility,which help in easy modification in the existing program at any time.展开更多
Train control system plays a key role in railway traffic. Its function is to manage and control the train movement on railway networks. In our previous works, based on the cellular automata (CA) model, we proposed sev...Train control system plays a key role in railway traffic. Its function is to manage and control the train movement on railway networks. In our previous works, based on the cellular automata (CA) model, we proposed several models and algorithms for simulating the train movement under different control system conditions. However, these models are only suitable for some simple traffic conditions. Some basic fac- tors, which are important for train movement, are not considered. In this paper, we extend these models and algorithms and give a unified formula. Using the pro- posed method, we analyze and discuss the space-time diagram of railway traffic flow and the trajectories of the train movement. The numerical simulation and analytical results demonstrate that the unified CA model is an effective tool for simulating the train control system.展开更多
This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing t...This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.展开更多
Communication based train control (CBTC) system is based on mobile communication and overcomes fixed blocks in order to increase track utilization and train safety. The data communication system (DCS) between trains a...Communication based train control (CBTC) system is based on mobile communication and overcomes fixed blocks in order to increase track utilization and train safety. The data communication system (DCS) between trains and wayside equipment is a crucial factor for the safe and efficient operation of CBTC system. The dependability under various transmission conditions needs to be modeled and evaluated. In this paper,a stochastic reward net (SRN) model for DCS based IEEE 802.11 standard was developed,which captures all relevant failure and failure recovery behavior system aspects in a concise way. We compared the reliability,availability for DCS with and without access point (AP) and antenna redundant configuration. We also quantitatively evaluated and compared the frame loss probability for three DCS configurations with different train velocities and train numbers in one radio cell. Fixed-point iteration was adopted to simplify the analysis. Numerical results showed the significant improvement of the reliability,availability and the frame loss probability index for the full redundant configuration.展开更多
The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 11...The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke.展开更多
Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal ve...Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.展开更多
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
In modern trains wheelset skidding leads to the deterioration of braking behavior,the degradation of comfort,as well as a boost in system hazards.Because of the nonlinearity and unknown characteristics of wheelset adh...In modern trains wheelset skidding leads to the deterioration of braking behavior,the degradation of comfort,as well as a boost in system hazards.Because of the nonlinearity and unknown characteristics of wheelset adhesion,simplifications are widely adopted in the modeling process of conventional antiskid controllers.Therefore,conventional antiskid controllers usually cannot perform satisfactorily.In this paper,systematic computer simulation and field tests for railway antiskid control system are introduced.The operating principal of antiskid control system is explained,which is fundamental to the simulation of antiskid brakes,and the simulation model is introduced,which incorporates both the adhesion creep curve and a pneumatic submodel of antiskid control system.In addition,the characteristics of adhesion curves and the simulation target are also provided.Using DHSplus,the pneumatic submodel is created to analyze the performance of the different control strategies of antiskid valves.Then the system simulation is realized by combining the kinematical characteristics of railway trains and the pneumatic submodel.The simulation is performed iteratively to obtain the optimized design of the antiskid control system.The design result is incorporated in the hardware design of the antiskid control system and is evaluated in the field tests in Shanghai Subway Line 1.Judging by the antiskid efficiency,the antiskid braking performance observed in the field tests shows the superiority of the optimized design.Therefore,the proposed simulation method,especially in view of its ease of application,appears to be a useful one for designing railway antiskid control systems.展开更多
The article presents wide experience in controlling athletic training aimed at preparation of the Russian national teams for major international competitions. Experimental part of the study has been carried out in the...The article presents wide experience in controlling athletic training aimed at preparation of the Russian national teams for major international competitions. Experimental part of the study has been carried out in the course of training camps and competitions since 2010. Forty Russian national teams in 15 winter and 3 summer Olympic sports participated in the research. Theoretical concepts set forth in the works of Anthony Stafford Beer made a basis of a system of control and management developed for the Russian national winter sports teams. In particular, a five-level system was applied to control athletic training. The authors point out that a system of control over athletic training in elite sport teams should take into account a few important issues: (1) each sport, team and athlete has distinctive features; (2) various aspects of athletic training and their interrelation must be aimed at raising effectiveness of training according to individual training plans; (3) coaches and sport managers must be provided with real-time information necessary for development of long-term and short-term training plans and their timely correction.展开更多
The application of Global Navigation Satellite Systems(GNSSs)in the intelligent railway systems is rapidly developing all over the world.With the GNSs-based train positioning and moving state perception,the autonomy a...The application of Global Navigation Satellite Systems(GNSSs)in the intelligent railway systems is rapidly developing all over the world.With the GNSs-based train positioning and moving state perception,the autonomy and flexibility of a novel train control system can be greatly enhanced over the existing solutions relying on the track-side facilities.Considering the safety critical features of the railway signaling applications,the GNSS stand-alone mode may not be sufficient to satisfy the practical requirements.In this paper,the key technologies for applying GNSS in novel train-centric railway signaling systems are investigated,including the multi-sensor data fusion,Virtual Balise(VB)capturing and messaging,train integrity monitoring and system performance evaluation.According to the practical characteristics of the novel train control system under the moving block mode,the details of the key technologies are introduced.Field demonstration results of a novel train control system using the presented technologies under the practical railway operation conditions are presented to illustrate the achievable performance feature of autonomous train state perception using BeiDou Navigation Satellite System(BDS)and related solutions.It reveals the great potentials of these key technologies in the next generation train control system and other GNSS-based railway implementations.展开更多
Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signal...Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.展开更多
This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling...This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling error, initial condition deviation, friction force and other unknown external disturbances always exist in a LLRR system. So, it is necessary to consider the uncertainties in the unilateral man-machine dynamical model of the LLRR we described. In the dynamical model, uncertainties are(possibly fast) time-varying and bounded. However, the bounds are unknown. Based on the dynamical model, we design an adaptive robust control with an adaptive law that is leakagetype based and on the framework of Udwadia-Kalaba theory to compensate for the uncertainties and to realize tracking control of the LLRR. Furthermore, the effectiveness of designed control is shown with numerical simulations.展开更多
基金supported by National Natural Science Foundation of China(U2268206,T2222015)Beijing Natural Science Foundation(4232031)+1 种基金Key Fields Project of DEGP(2021ZDZX1110)Shenzhen Science and Technology Program(CJGJZD20220517141801004).
文摘In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.
文摘Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
文摘Objective:To analyze the effects of repetitive transcranial magnetic stimulation combined with motor control training on the treatment of stroke-induced hemiplegia,specifically focusing on the impact on patients’balance function and gait.Methods:Fifty-two cases of hemiplegic stroke patients were randomly divided into two groups,26 in the control group and 26 in the observation group,using computer-generated random grouping.All participants underwent conventional treatment and rehabilitation training.In addition to these,the control group received repetitive transcranial magnetic pseudo-stimulation therapy+motor control training,while the observation group received repetitive transcranial magnetic stimulation therapy+motor control training.The balance function and gait parameters of both groups were compared before and after the interventions and assessed the satisfaction of the interventions in both groups.Results:Before the invention,there were no significant differences in balance function scores and each gait parameter between the two groups(P>0.05).However,after the intervention,the observation group showed higher balance function scores compared to the control group(P<0.05).The observation group also exhibited higher step speed and step frequency,longer step length,and a higher overall satisfaction level with the intervention compared to the control group(P<0.05).Conclusion:The combination of repetitive transcranial magnetic stimulation and motor control training in the treatment of stroke-induced hemiplegia has demonstrated positive effects.It not only improves the patient’s balance function and gait but also contributes to overall physical rehabilitation.
基金supported by the New Century Excellent Researcher Award Program from Ministry of Education of China (Grant No. NCET-07-0059)the Fundamental Research Funds for the Central Universities (Grant No.2011YJS006)+1 种基金the National High Technology Research and DevelopmentProgram of China ("863" Program) (Grant No. 2011AA010104)the State Key Laboratory of Rail Traffic Control and Safety Research Project(Grant Nos. RCS2008ZZ001, RCS2008ZZ005)
文摘In order to satisfy the safety-critical requirements,the train control system(TCS) often employs a layered safety communication protocol to provide reliable services.However,both description and verification of the safety protocols may be formidable due to the system complexity.In this paper,interface automata(IA) are used to describe the safety service interface behaviors of safety communication protocol.A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN.A case study of using this method to describe and verify a safety communication protocol is included.The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks,livelocks and several mandatory consistency properties.A prototype of safety protocols is also developed based on the presented formally verifying method.
文摘This paper proposes to adopt SCADA and PLC technology for the improvement of the performance of real time signaling&train control systems in metro railways.The main concern of this paper is to minimize the failure in automated metro railways system operator and integrate the information coming from Operational Control Centre(OCC),traction SCADA system,traction power control,and power supply system.This work presents a simulated prototype of an automated metro train system operator that uses PLC and SCADA for the real time monitoring and control of the metro railway systems.Here,SCADA is used for the visualization of an automated process operation and then the whole opera-tion is regulated with the help of PLC.The PLC used in this process is OMRON(NX1P2-9024DT1)and OMRON’s Sysmac studio programming software is used for developing the ladder logic of PLC.The metro railways system has deployed infrastructure based on SCADA from the power supply system,and each station’s traction power control is connected to the OCC remotely which commands all of the stations and has the highest command priority.An alarm is triggered in the event of an emergency or system congestion.This proposed system overcomes the drawbacks of the current centralized automatic train control(CATC)system.This system provides prominent benefits like augmenting services which may enhance a network’s full load capacity and networkflexibility,which help in easy modification in the existing program at any time.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0605)the National Natural Science Foundation of China (Grant Nos. 60634010, 60776829)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-06-0074) the Key Project of Ministry of Education of China (Grant No. 107007)
文摘Train control system plays a key role in railway traffic. Its function is to manage and control the train movement on railway networks. In our previous works, based on the cellular automata (CA) model, we proposed several models and algorithms for simulating the train movement under different control system conditions. However, these models are only suitable for some simple traffic conditions. Some basic fac- tors, which are important for train movement, are not considered. In this paper, we extend these models and algorithms and give a unified formula. Using the pro- posed method, we analyze and discuss the space-time diagram of railway traffic flow and the trajectories of the train movement. The numerical simulation and analytical results demonstrate that the unified CA model is an effective tool for simulating the train control system.
基金supported by the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period of China (No.2009BAG12A05)
文摘This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60634010, 60736047) the Doctoral Program Foundation of Institutions of High Education of China (Grant No. 20070004005)
文摘Communication based train control (CBTC) system is based on mobile communication and overcomes fixed blocks in order to increase track utilization and train safety. The data communication system (DCS) between trains and wayside equipment is a crucial factor for the safe and efficient operation of CBTC system. The dependability under various transmission conditions needs to be modeled and evaluated. In this paper,a stochastic reward net (SRN) model for DCS based IEEE 802.11 standard was developed,which captures all relevant failure and failure recovery behavior system aspects in a concise way. We compared the reliability,availability for DCS with and without access point (AP) and antenna redundant configuration. We also quantitatively evaluated and compared the frame loss probability for three DCS configurations with different train velocities and train numbers in one radio cell. Fixed-point iteration was adopted to simplify the analysis. Numerical results showed the significant improvement of the reliability,availability and the frame loss probability index for the full redundant configuration.
文摘The effect of combined low-frequency repetitive transcranial magnetic stimulation(LF r TMS) and virtual reality(VR) training in patients after stroke was assessed. In a double-blind randomized controlled trial, 112 patients with hemiplegia after stroke were randomly divided into two groups: experimental and control. In experimental group, the patients received LF r TMS and VR training treatment, and those in control group received sham r TMS and VR training treatment. Participants in both groups received therapy of 6 days per week for 4 weeks. The primary endpoint including the upper limb motor function test of Fugl-meyer assessment(U-FMA) and wolf motor function test(WMFT), and the secondary endpoint including modified Barthel index(MBI) and 36-item Short Form Health Survey Questionnaire(SF-36) were assessed before and 4 weeks after treatment. Totally, 108 subjects completed the study(55 in experimental group and 53 in control group respectively). After 4-week treatment, the U-FMA scores [mean difference of 13.2, 95% confidence interval(CI) 3.6 to 22.7, P〈0.01], WMFT scores(mean difference of 2.9, 95% CI 2.7 to 12.3, P〈0.01), and MBI scores(mean difference 16.1, 95% CI 3.8 to 9.4, P〈0.05) were significantly increased in the experimental group as compared with the control group. The results suggested the combined use of LF r TMS with VR training could effectively improve the upper limb function, the living activity, and the quality of life in patients with hemiplegia following subacute stroke, which may provide a better rehabilitation treatment for subacute stroke.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60634010 and 60776829the State Key Laboratory of Rail Traffic Control and Safety (Contract No.RCS2008ZZ001 and RCS2010ZZ001),Beijing Jiaotong University
文摘Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.
基金supported by National Natural Science Foundation of China (Grant No. 61004077)National Key Technology R&D Program of the 11th Five Year Plan of China (Grant No. 2009BAG11B02)Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University,China (Grant No. TPL1107)
文摘In modern trains wheelset skidding leads to the deterioration of braking behavior,the degradation of comfort,as well as a boost in system hazards.Because of the nonlinearity and unknown characteristics of wheelset adhesion,simplifications are widely adopted in the modeling process of conventional antiskid controllers.Therefore,conventional antiskid controllers usually cannot perform satisfactorily.In this paper,systematic computer simulation and field tests for railway antiskid control system are introduced.The operating principal of antiskid control system is explained,which is fundamental to the simulation of antiskid brakes,and the simulation model is introduced,which incorporates both the adhesion creep curve and a pneumatic submodel of antiskid control system.In addition,the characteristics of adhesion curves and the simulation target are also provided.Using DHSplus,the pneumatic submodel is created to analyze the performance of the different control strategies of antiskid valves.Then the system simulation is realized by combining the kinematical characteristics of railway trains and the pneumatic submodel.The simulation is performed iteratively to obtain the optimized design of the antiskid control system.The design result is incorporated in the hardware design of the antiskid control system and is evaluated in the field tests in Shanghai Subway Line 1.Judging by the antiskid efficiency,the antiskid braking performance observed in the field tests shows the superiority of the optimized design.Therefore,the proposed simulation method,especially in view of its ease of application,appears to be a useful one for designing railway antiskid control systems.
文摘The article presents wide experience in controlling athletic training aimed at preparation of the Russian national teams for major international competitions. Experimental part of the study has been carried out in the course of training camps and competitions since 2010. Forty Russian national teams in 15 winter and 3 summer Olympic sports participated in the research. Theoretical concepts set forth in the works of Anthony Stafford Beer made a basis of a system of control and management developed for the Russian national winter sports teams. In particular, a five-level system was applied to control athletic training. The authors point out that a system of control over athletic training in elite sport teams should take into account a few important issues: (1) each sport, team and athlete has distinctive features; (2) various aspects of athletic training and their interrelation must be aimed at raising effectiveness of training according to individual training plans; (3) coaches and sport managers must be provided with real-time information necessary for development of long-term and short-term training plans and their timely correction.
基金supported by National Key Research and Development Program of China(2022YFB4300501)National Natural Science Foundation of China(62027809,U2268206,T2222015).
文摘The application of Global Navigation Satellite Systems(GNSSs)in the intelligent railway systems is rapidly developing all over the world.With the GNSs-based train positioning and moving state perception,the autonomy and flexibility of a novel train control system can be greatly enhanced over the existing solutions relying on the track-side facilities.Considering the safety critical features of the railway signaling applications,the GNSS stand-alone mode may not be sufficient to satisfy the practical requirements.In this paper,the key technologies for applying GNSS in novel train-centric railway signaling systems are investigated,including the multi-sensor data fusion,Virtual Balise(VB)capturing and messaging,train integrity monitoring and system performance evaluation.According to the practical characteristics of the novel train control system under the moving block mode,the details of the key technologies are introduced.Field demonstration results of a novel train control system using the presented technologies under the practical railway operation conditions are presented to illustrate the achievable performance feature of autonomous train state perception using BeiDou Navigation Satellite System(BDS)and related solutions.It reveals the great potentials of these key technologies in the next generation train control system and other GNSS-based railway implementations.
基金This research was jointly supported by the National Natural Science Foundation of China[Grant 62203468]the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)[Grant 2022QNRC001]+1 种基金the Technological Research and Development Program of China Railway Corporation Limited[Grant K2021X001]by the Foundation of China Academy of Railway Sciences Corporation Limited[Grant 2021YJ043].On behalf all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This paper aims to propose a train timetable rescheduling(TTR)approach from the perspective of multi-train tracking optimization based on the mutual spatiotemporal information in the high-speed railway signaling system.Design/methodology/approach–Firstly,a single-train trajectory optimization(STTO)model is constructed based on train dynamics and operating conditions.The train kinematics parameters,including acceleration,speed and time at each position,are calculated to predict the arrival times in the train timetable.A STTO algorithm is developed to optimize a single-train time-efficient driving strategy.Then,a TTR approach based on multi-train tracking optimization(TTR-MTTO)is proposed with mutual information.The constraints of temporary speed restriction(TSR)and end of authority are decoupled to calculate the tracking trajectory of the backward tracking train.The multi-train trajectories at each position are optimized to generate a timeefficient train timetable.Findings–The numerical experiment is performed on the Beijing-Tianjin high-speed railway line and CR400AF.The STTO algorithm predicts the train’s planned arrival time to calculate the total train delay(TTD).As for the TSR scenario,the proposed TTR-MTTO can reduce TTD by 60.60%compared with the traditional TTR approach with dispatchers’experience.Moreover,TTR-MTTO can optimize a time-efficient train timetable to help dispatchers reschedule trains more reasonably.Originality/value–With the cooperative relationship and mutual information between train rescheduling and control,the proposed TTR-MTTO approach can automatically generate a time-efficient train timetable to reduce the total train delay and the work intensity of dispatchers.
基金supported by the National Natural Science Foundation of China(51505116)the Fundamental Research Funds for the Central Universities(JZ2016HGTB0716)+2 种基金Natural and Science Foundation of Anhui Province(1508085SME221)China Postdoctoral Science Foundation(2016M590563)the Science and Technology Public Relations Project of Anhui Province(1604a0902181)
文摘This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling error, initial condition deviation, friction force and other unknown external disturbances always exist in a LLRR system. So, it is necessary to consider the uncertainties in the unilateral man-machine dynamical model of the LLRR we described. In the dynamical model, uncertainties are(possibly fast) time-varying and bounded. However, the bounds are unknown. Based on the dynamical model, we design an adaptive robust control with an adaptive law that is leakagetype based and on the framework of Udwadia-Kalaba theory to compensate for the uncertainties and to realize tracking control of the LLRR. Furthermore, the effectiveness of designed control is shown with numerical simulations.