In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and...In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and the compensation balance excitation caused by the rotor mass eccentricity considered.The angle iteration method is used to overcome the challenge posed by the inability to determine the roller space position during bearing rotation.The simulation results show that the model accurately describes the dynamics of bearings under varying speed profles that contain acceleration,deceleration,and speed oscillation stages.The order ratio spectrum of the bearing vibration signal indicates that both the single and multiple frequencies in the simulation results are consistent with the theoretical results.Experiments on bearings with outer and inner ring faults under various operating conditions are performed to verify the developed model.展开更多
The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different fac...The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different factors on the aerodynamic drag of a train running at subsonic speed in an evacuated tube. Firstly, we present the assumption of a steady state, two dimensional, incompressible viscous flow with lubricity wall conditions. Subsequently, based on the Navier-Stokes equation and the k-c turbulent models, we calculate the aerodynamic drag imposed on the column train with a 3-meter diameter running under different pressure and blockage ratio conditions in an evacuated tube transporta- tion (ETT) system. The simulation is performed with FLUENT 6.3 software package. An analyses of the simulation re- sults suggest that the blockage ratio for ETT should be in the range of 0.25-0.7, and the tube internal diameter in the range of 2-4 m, with the feasible vacuum pressure in the range of 1-10 000 Pa for the future subsonic ETT trains.展开更多
The so-called Evacuated Tube Train(ETT)is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation.Aerodynamic resistance is one of the most crucial factors f...The so-called Evacuated Tube Train(ETT)is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation.Aerodynamic resistance is one of the most crucial factors for the successful design of an ETT.In the present work,a three-dimensional concept ETT model has been elaborated.The aerodynamic characteristics of the subsonic ETT have been numerically simulated under different conditions.The train’s running speed varies from 600 km/h up to 1200 km/h,and the blockage ratio is in the range between 0.1 and 0.3.As the blocking ratio and running speed increase,the resistance of the head car increases greatly,while the resistance of the middle car changes slightly.The aerodynamic resistance of the tail car is affected by the shock wave emerging in the wake flow.Two different design criteria for the maximum allowed aerodynamic resistance are proposed for aerodynamic parameter matching.With an increase in the blockage ratio and running speed,the atmospheric pressure in the tube should be decreased to achieve a balance.展开更多
Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic d...Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic drag on a maglev train in an evacuated tube was made with ANSYS/FLOTRAN software under different vacuum pressures, blockage ratios, and shapes of train head and tail. The pressure flow fields of the evacuated tube maglev train under different vacuum pressures were analyzed, and then compared under the same blockage ratio condition. The results show that the environmental pressure of 1 000 Pa in the tube is the best to achieve the effect of aerodynamic drag reduction, and there are no obvious differences in the aerodynamic drag reduction among different streamline head shapes. Overall, the blunt-shape tail and the blockage ratio of 0.25 are more efficient for drag reduction of the train at the tube pressure of 1 000 Pa.展开更多
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is o...Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.展开更多
To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3...To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3D model included three complicated wagons for which longitudinal, lateral, and vertical degrees of freedom were considered. Combined with the calculated results from the 1D model under braking conditions, the behavior of draft gears and brake shoes were added to the 3D model. The assessment of the curving performance of trains was focused on making comparisons between idling and braking conditions. The results indicated the following: when a train brakes on a curved track, the wheel-rail lateral force and derailment factor are greater than under idling conditions. Because the yawing movement of the wheelset is limited by brake shoes, the zone of wheel contact along the wheel tread is wider than under idling conditions. Furthermore, as the curvature becomes tighter, the traction ratio shows a nonlinear increasing trend, whether under idling or braking conditions. By increasing the brake shoe pressure, train steering becomes more difficult.展开更多
For the 30,000 km long French conventional railway lines(94% of the whole network),the train speed is currently limited to 220 km/h,whilst the speed is 320 km/h for the 1800 km long high-speed lines.Nowadays,there is ...For the 30,000 km long French conventional railway lines(94% of the whole network),the train speed is currently limited to 220 km/h,whilst the speed is 320 km/h for the 1800 km long high-speed lines.Nowadays,there is a growing need to improve the services by increasing the speed limit for the conventional lines.This paper aims at studying the influence of train speed on the mechanical behaviours of track-bed materials based on field monitoring data.Emphasis is put on the behaviours of interlayer and subgrade soils.The selected experimental site is located in Vierzon,France.Several sensors including accelerometers and soil pressure gauges were installed at different depths.The vertical strains of different layers can be obtained by integrating the records of accelerometers installed at different trackbed depths.The experimentation was carried out using an intercity test train running at different speeds from 60 km/h to 200 km/h.This test train was composed of a locomotive(22.5 Mg/axle) and 7 'Corail'coaches(10.5 Mg/axle).It was observed that when the train speed was raised,the loadings transmitted to the track-bed increased.Moreover,the response of the track-bed materials was amplified by the speed rise at different depths:the vertical dynamic stress was increased by about 10% when the train speed was raised from 60 km/h to 200 km/h for the locomotive loading,and the vertical strains doubled their quasistatic values in the shallow layers.Moreover,the stressestrain paths were estimated using the vertical stress and strain for each train speed.These loading paths allowed the resilient modulus Mrto be determined.It was found that the resilient modulus(M_r) was decreased by about 10% when the train speed was increased from 100 km/h to 200 km/h.However,the damping ratio(D_r) kept stable in the range of speeds explored.展开更多
Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, i...Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, its remarkable drawback is the high computational complexity. In order to reduce the computational complexity, currently many PTS methods have been proposed but with the cost of the loss of PAPR performance of the system. In this paper, we introduce an improved PTS optimization method with superimposed training. Simulation results show that, compared with conventional PTS, improved PTS scheme can achieve better PAPR performance while be implemented with lower computation complexity of the system.展开更多
The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed...The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed train( HST) environment,which leads to severe inter-carrier interference( ICI). Therefore,it is necessary to analyze the mechanism and influence factor of ICI in HST environment. In this paper, by using a non-stationary geometry-based stochastic model( GBSM) for MIMO HST channels, ICI is analyzed through investigating the channel coefficients and the carrier-to-interference power ratio( CIR). It is a fact that most of signal energy spreads on itself and its several neighborhood subcarriers. By investigating the amplitude of subcarriers, CIR is used to evaluate the ICI power level. The simulation results show that the biggest impact factor for the CIR is the multipath number L and the minimum impact factor K; when the train speed υR> 400 km / h,the normalized Doppler frequency offset ε > 0. 35,the CIR tends to zero,and the communication quality will be very poor at this condition. Finally,bit error rate( BER) is investigated by simulating a specific channel environment.展开更多
Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal t...Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains(RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence significantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle(C4–6) and lower(C7–T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were significantly higher in white matter than in gray matter. Our study verified that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11790282,12032017,11802184,11902205,12002221,11872256)S&T Program of Hebei(Grant No.20310803D)+2 种基金Natural Science Foundation of Hebei Province(Grant No.A2020210028)Postgraduates Innovation Foundation of Hebei Province(Grant No.CXZZBS2019154)State Foundation for Studying Abroad.
文摘In this study,a dynamic model for the bearing rotor system of a high-speed train under variable speed conditions is established.In contrast to previous studies,the contact stress is simplifed in the proposed model and the compensation balance excitation caused by the rotor mass eccentricity considered.The angle iteration method is used to overcome the challenge posed by the inability to determine the roller space position during bearing rotation.The simulation results show that the model accurately describes the dynamics of bearings under varying speed profles that contain acceleration,deceleration,and speed oscillation stages.The order ratio spectrum of the bearing vibration signal indicates that both the single and multiple frequencies in the simulation results are consistent with the theoretical results.Experiments on bearings with outer and inner ring faults under various operating conditions are performed to verify the developed model.
基金supported by the National Natural Science Foundation of China (No. 50678152)the Scientific Plan Fund of Shaanxi Province(No. 2009K09-24)
文摘The aerodynamic drag on a train running in an evacuated tube varies with tube air pressure, train speed and shape, as well as blockage ratio. This paper uses numerical simulations to study the effects of different factors on the aerodynamic drag of a train running at subsonic speed in an evacuated tube. Firstly, we present the assumption of a steady state, two dimensional, incompressible viscous flow with lubricity wall conditions. Subsequently, based on the Navier-Stokes equation and the k-c turbulent models, we calculate the aerodynamic drag imposed on the column train with a 3-meter diameter running under different pressure and blockage ratio conditions in an evacuated tube transporta- tion (ETT) system. The simulation is performed with FLUENT 6.3 software package. An analyses of the simulation re- sults suggest that the blockage ratio for ETT should be in the range of 0.25-0.7, and the tube internal diameter in the range of 2-4 m, with the feasible vacuum pressure in the range of 1-10 000 Pa for the future subsonic ETT trains.
基金supported by Sichuan Science and Technology Program(No.2019YJ0227)China Postdoctoral Science Foundation(No.2019M663550)+1 种基金China Postdoctoral Science Foundation(No.2019M663550)Science and Technology Program of China Railway Group Limited(No.2018-S-02).
文摘The so-called Evacuated Tube Train(ETT)is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation.Aerodynamic resistance is one of the most crucial factors for the successful design of an ETT.In the present work,a three-dimensional concept ETT model has been elaborated.The aerodynamic characteristics of the subsonic ETT have been numerically simulated under different conditions.The train’s running speed varies from 600 km/h up to 1200 km/h,and the blockage ratio is in the range between 0.1 and 0.3.As the blocking ratio and running speed increase,the resistance of the head car increases greatly,while the resistance of the middle car changes slightly.The aerodynamic resistance of the tail car is affected by the shock wave emerging in the wake flow.Two different design criteria for the maximum allowed aerodynamic resistance are proposed for aerodynamic parameter matching.With an increase in the blockage ratio and running speed,the atmospheric pressure in the tube should be decreased to achieve a balance.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT) of the Ministry of Education of China(IRT0751)the National High Technology Research and Development Program of China (863 program: 2007-AA03Z203)+2 种基金the National Natural Science Foundation of China (Grant Nos. 50588201 and 50872116)the Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023)the Fundamental Research Funds for the Central Universities (SWJTU09BR152, SWJTU09ZT24, and SWJTU11CX073)
文摘Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic drag on a maglev train in an evacuated tube was made with ANSYS/FLOTRAN software under different vacuum pressures, blockage ratios, and shapes of train head and tail. The pressure flow fields of the evacuated tube maglev train under different vacuum pressures were analyzed, and then compared under the same blockage ratio condition. The results show that the environmental pressure of 1 000 Pa in the tube is the best to achieve the effect of aerodynamic drag reduction, and there are no obvious differences in the aerodynamic drag reduction among different streamline head shapes. Overall, the blunt-shape tail and the blockage ratio of 0.25 are more efficient for drag reduction of the train at the tube pressure of 1 000 Pa.
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975544,51675495).
文摘Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.
文摘To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3D model included three complicated wagons for which longitudinal, lateral, and vertical degrees of freedom were considered. Combined with the calculated results from the 1D model under braking conditions, the behavior of draft gears and brake shoes were added to the 3D model. The assessment of the curving performance of trains was focused on making comparisons between idling and braking conditions. The results indicated the following: when a train brakes on a curved track, the wheel-rail lateral force and derailment factor are greater than under idling conditions. Because the yawing movement of the wheelset is limited by brake shoes, the zone of wheel contact along the wheel tread is wider than under idling conditions. Furthermore, as the curvature becomes tighter, the traction ratio shows a nonlinear increasing trend, whether under idling or braking conditions. By increasing the brake shoe pressure, train steering becomes more difficult.
基金part of the results obtained within the ‘INVICSA’ research project funded by SNCF-INFRASTRUCTURE and the ANRT with a CIFRE funding number 2012/1150
文摘For the 30,000 km long French conventional railway lines(94% of the whole network),the train speed is currently limited to 220 km/h,whilst the speed is 320 km/h for the 1800 km long high-speed lines.Nowadays,there is a growing need to improve the services by increasing the speed limit for the conventional lines.This paper aims at studying the influence of train speed on the mechanical behaviours of track-bed materials based on field monitoring data.Emphasis is put on the behaviours of interlayer and subgrade soils.The selected experimental site is located in Vierzon,France.Several sensors including accelerometers and soil pressure gauges were installed at different depths.The vertical strains of different layers can be obtained by integrating the records of accelerometers installed at different trackbed depths.The experimentation was carried out using an intercity test train running at different speeds from 60 km/h to 200 km/h.This test train was composed of a locomotive(22.5 Mg/axle) and 7 'Corail'coaches(10.5 Mg/axle).It was observed that when the train speed was raised,the loadings transmitted to the track-bed increased.Moreover,the response of the track-bed materials was amplified by the speed rise at different depths:the vertical dynamic stress was increased by about 10% when the train speed was raised from 60 km/h to 200 km/h for the locomotive loading,and the vertical strains doubled their quasistatic values in the shallow layers.Moreover,the stressestrain paths were estimated using the vertical stress and strain for each train speed.These loading paths allowed the resilient modulus Mrto be determined.It was found that the resilient modulus(M_r) was decreased by about 10% when the train speed was increased from 100 km/h to 200 km/h.However,the damping ratio(D_r) kept stable in the range of speeds explored.
文摘Partial Transmit Sequences (PTS) is an efficient scheme for Peak-to-Average Power Ratio (PAPR) reduction in Orthogonal Frequency Division Multiplexing (OFDM) system. It does not bring any signal distortion. However, its remarkable drawback is the high computational complexity. In order to reduce the computational complexity, currently many PTS methods have been proposed but with the cost of the loss of PAPR performance of the system. In this paper, we introduce an improved PTS optimization method with superimposed training. Simulation results show that, compared with conventional PTS, improved PTS scheme can achieve better PAPR performance while be implemented with lower computation complexity of the system.
基金National Natural Science Foundation of China(No.61271213)
文摘The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed train( HST) environment,which leads to severe inter-carrier interference( ICI). Therefore,it is necessary to analyze the mechanism and influence factor of ICI in HST environment. In this paper, by using a non-stationary geometry-based stochastic model( GBSM) for MIMO HST channels, ICI is analyzed through investigating the channel coefficients and the carrier-to-interference power ratio( CIR). It is a fact that most of signal energy spreads on itself and its several neighborhood subcarriers. By investigating the amplitude of subcarriers, CIR is used to evaluate the ICI power level. The simulation results show that the biggest impact factor for the CIR is the multipath number L and the minimum impact factor K; when the train speed υR> 400 km / h,the normalized Doppler frequency offset ε > 0. 35,the CIR tends to zero,and the communication quality will be very poor at this condition. Finally,bit error rate( BER) is investigated by simulating a specific channel environment.
文摘Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains(RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence significantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle(C4–6) and lower(C7–T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were significantly higher in white matter than in gray matter. Our study verified that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.
文摘探讨4种不同运动时间和间歇模式的大强度间歇运动(HIIT)诱发愉悦情绪和享受感的效果差异。方法:将75名大学生随机分配至运动30 s间歇30 s组、运动1 min间歇1 min组、运动30 s间歇1min组和运动1 min间歇2 min组,分别于运动前、运动后即刻和20 min测量其享受感,并对运动中的疲劳感、愉悦情绪和享受感进行测试。结果:1)运动30 s间歇1 min HIIT相比运动1 min间歇2 min,运动30 s间歇30 s HIIT相比运动1 min间歇1 min HIIT均可诱发更积极的愉悦情绪。运动30 s间歇1 min HIIT诱发的愉悦情绪最高,运动1 min间歇1 min HIIT诱发的愉悦情绪最低。2)1:1间歇模式HIIT诱发的享受感水平低于1:2间歇模式,并且与运动30 s间歇30 s、运动1 min间歇1 min HIIT相比,运动1min间歇2 min HIIT诱发的享受感水平更高。3)运动30 s间歇1 min HIIT诱发的享受感水平显著高于运动1 min间歇1 min,相同间歇模式HIIT诱发的享受感水平没有显著差异。结论:1)运动时间和间歇时间等量时,运动时间越长,愉悦情绪越低,运动时间小于间歇时间的HIIT诱发的愉悦情绪更高。2)间歇期长的HIIT诱发的享受感水平更高,相同间歇模式的运动时间长短不影响运动后产生的享受感。3)短时间多组数HIIT是诱发愉悦情绪的最佳方案,长时间的间歇期HIIT是诱发享受感的最佳方案。