This paper concerns with modeling and design of an algorithm for the portfolio selection problems with fixed transaction costs and minimum transaction lots. A mean-variance model for the portfolio selection problem is...This paper concerns with modeling and design of an algorithm for the portfolio selection problems with fixed transaction costs and minimum transaction lots. A mean-variance model for the portfolio selection problem is proposed, and the model is formulated as a non-smooth and nonlinear integer programming problem with multiple objective functions. As it has been proven that finding a feasible solution to the problem only is already NP-hard, based on NSGA-II and genetic algorithm for numerical optimization of constrained problems (Genocop), a multi-objective genetic algorithm (MOGA) is designed to solve the model. Its features comprise integer encoding and corresponding operators, and special treatment of constraints conditions. It is illustrated via a numerical example that the genetic algorithm can efficiently solve portfolio selection models proposed in this paper. This approach offers promise for the portfolio problems in practice.展开更多
文摘This paper concerns with modeling and design of an algorithm for the portfolio selection problems with fixed transaction costs and minimum transaction lots. A mean-variance model for the portfolio selection problem is proposed, and the model is formulated as a non-smooth and nonlinear integer programming problem with multiple objective functions. As it has been proven that finding a feasible solution to the problem only is already NP-hard, based on NSGA-II and genetic algorithm for numerical optimization of constrained problems (Genocop), a multi-objective genetic algorithm (MOGA) is designed to solve the model. Its features comprise integer encoding and corresponding operators, and special treatment of constraints conditions. It is illustrated via a numerical example that the genetic algorithm can efficiently solve portfolio selection models proposed in this paper. This approach offers promise for the portfolio problems in practice.