期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Observation of Transcription Regulation in the Mouse Heart Nuclear DNA Fragments and the Specific-protein Interaction by AFM
1
作者 袁明秀 Ren +6 位作者 Zhong Zheng Fei Deng Aiping Li Jianwei 《High Technology Letters》 EI CAS 2003年第1期17-21,共5页
Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regul... Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regulation sequences at both ends are associated with scaffold proteins (indissociable proteins) and some transcriptional factors such as complexes (dissociable proteins) made of gene-coding proteins and specific auxiliary small molecules, while there are no combining proteins in intermediate coding sequences. However, in active genes of transcriptional state, both regulation sequences and intermediate coding sequences are associated with active transcriptional factors by non-covalent bonds.This paper shows the prospective application of AFM observation and in vitro transcription in the research on gene expression and regulation. It also offers some theoretical basis for localization of specific genes in human genomes. 展开更多
关键词 auxiliary signal small molecules NAD+ transcriptional regulation factor transcriptional active factor space-time speciality AFM
下载PDF
Phase separation and transcriptional regulation in cancer development 被引量:1
2
作者 Yan Gu Ke Wei Jun Wang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期307-321,共15页
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol... Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development. 展开更多
关键词 phase separation transcription regulation CANCER super-enhancer CONDENSATES
下载PDF
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
3
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFERENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Transcriptional regulation of MdPIN7 by MdARF19 during gravityinduced formation of adventitious root GSA in self-rooted apple stock
4
作者 Zenghui Wang Xuemei Yang +5 位作者 Linyue Hu Wei Liu Lijuan Feng Xiang Shen Yanlei Yin Jialin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1073-1084,共12页
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the... Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals. 展开更多
关键词 APPLE Self-rooted stock GRAVITY MdARF19 MdPIN7 Gravitropic set-point angle transcriptional regulation
下载PDF
Transcriptional Regulation of 10 Mitochondrial Genes in Different Tissues of NCa CMS System in Brassica napus L. and Their Relationship with Sterility 被引量:3
5
作者 危文亮 王汉中 刘贵华 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第1期72-80,共9页
Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea... Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed. 展开更多
关键词 Brassica napus L. cytoplasmic male sterility (CMS) mitochondrial gene expression restorer gene transcriptional regulation
下载PDF
Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis-related genes 被引量:6
6
作者 Qianlin Xiao Yayun Wang +11 位作者 Hui Li Chunxia Zhang Bin Wei Yongbin Wang Huanhuan Huang Yangping Li Guowu Yu Hanmei Liu Junjie Zhang Yinghong Liu Yufeng Hu Yubi Huang 《The Crop Journal》 SCIE CSCD 2021年第1期192-203,共12页
Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well unde... Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well understood in maize.We report the identification of the transcription factor ZmNAC126 and its role in regulation of starch synthesis in maize.Transcriptional expression of ZmNAC126 was higher in maize endosperm and kernels than in roots or stems.ZmNAC126 shared a similar expression pattern with starch synthesis genes during seed development,and its expression pattern was also consistent with the accumulation of starch.ZmNAC126 is a typical transcription factor with a transactivation domain between positions 201 and 227 of the amino acid sequence,is located in the nucleus,and binds to CACG repeats in vitro.Yeast one-hybrid assay revealed that ZmNAC126 bound the promoters of ZmGBSSI,ZmSSIIa,ZmSSIV,ZmISA1,and ZmISA2.Transient overexpression of ZmNAC126 in maize endosperm increased the activities of promoters pZmSh2,pZmBt2,pZmGBSSI,pZmSSIIIa,and pZmBT1 but inhibited the activities of pZmISA1 and pZmISA2.ZmNAC126 thus acts in starch synthesis by transcriptionally regulating targeted starch synthesis-related genes in maize kernels. 展开更多
关键词 MAIZE Starch synthesis ZmNAC126 CO-EXPRESSION transcription regulation
下载PDF
Plant Mediator complex and its critical functions in transcription regulation 被引量:7
7
作者 Yan Yang Ling Li Li-Jia Qu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第2期106-118,共13页
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to ... The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. 展开更多
关键词 Mediator complex transcription factors transcription regulation
原文传递
Evolutionary rewiring and reprogramming of bacterial transcription regulation
8
作者 Li Wang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2011年第7期279-288,共10页
Rewiring and reprogramming of transcriptional regulation took place during bacterial speciation. The mechanistic alterations among tran- scription factors, cis-regulatory elements and target genes confer bacteria nove... Rewiring and reprogramming of transcriptional regulation took place during bacterial speciation. The mechanistic alterations among tran- scription factors, cis-regulatory elements and target genes confer bacteria novel ability to adapt to stochastic environmental changes. This process is critical to their survival, especially for bacterial pathogens subjected to accelerated evolution. In the past two decades, the investigators not only completed the sequences of numerous bacterial genomes, but also made great progress in understanding the molecular basis of evolution. Here we briefly reviewed the current knowledge on the mechanistic changes among orthologous, paralogous and xenogenic regulatory circuits, which were caused by genetic recombinations such as gene duplication, horizontal gene transfer, transposable elements and different genetic contexts. We also discussed the potential impact of this area on theoretical and applied studies of microbes. 展开更多
关键词 EVO-DEVO transcription regulation Rewiring REPROGRAMMING Molecular evolution
原文传递
Transcriptional Regulation by HSV-1 Induced HTRP via Acetylation System
9
作者 Jie CHEN Yan-mei LI Jian-feng LI Long-ding LIU Yun LIAO Rui-xiong NA Jing-jing WANG Li-chun WANG Qi-han LI 《Virologica Sinica》 SCIE CAS CSCD 2010年第6期417-424,共8页
The protein HTRP (human transcription regulator protein) is encoded by the differential gene htrp and induced by Herpes simplex virus type 1 (HSV-1) infection in KMB-17 cells.HTRP was found to interact with SAP30 (mSi... The protein HTRP (human transcription regulator protein) is encoded by the differential gene htrp and induced by Herpes simplex virus type 1 (HSV-1) infection in KMB-17 cells.HTRP was found to interact with SAP30 (mSin3A Association Protein),one of the components of co-repressor complex mSin3A,which is part of the deacetylation transfer enzyme HDAC.To reveal the biological significance of the interaction between HTRP and SAP30,real-time PCR and a dual-luciferase detecting system was used.The results indicate that HTRP could inhibit the transcription of a viral promoter,whose interaction with SAP30 synergistically affects transcriptional inhibition of the viral genes,and is related to HDAC enzyme activity.ChIP experiments demonstrate that HTRP could promote HDAC activity by increasing the deacetylation level of lysine 14 and lysine 9 in histone H3. 展开更多
关键词 Herpes simplex virus type 1 (HSV-1) HTRP SAP30 transcription regulation
下载PDF
Transcriptional regulation of endothelial dysfunction in atherosclerosis:an epigenetic perspective 被引量:10
10
作者 Yong Xu 《The Journal of Biomedical Research》 CAS 2014年第1期47-52,共6页
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosc... Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclero- sis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atheroscle- rotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis. 展开更多
关键词 ATHEROSCLEROSIS transcriptional regulation endothelial injury EPIGENETICS
下载PDF
Transcription regulation by DNA methylation under stressful conditions in human cancer 被引量:2
11
作者 Sha Cao Yi Zhou +3 位作者 Yue Wu Tianci Song Burair Alsaihati Ying Xu 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2017年第4期328-337,共10页
Background: We aim to address one question: do cancer vs. normal tissue cells execute their transcription regulation essentially the same or differently, and why? Methods: We utilized an integrated computational s... Background: We aim to address one question: do cancer vs. normal tissue cells execute their transcription regulation essentially the same or differently, and why? Methods: We utilized an integrated computational study of cancer epigenomes and transcriptomes of 10 cancer types, by using penalized linear regression models to evaluate the regulatory effects of DNA methylations on gene expressions. Results: Our main discoveries are: (i) 56 genes have their expressions consistently regulated by DNA methylation specifically in cancer, which enrich pathways associated with micro-environmental stresses and responses, particularly oxidative stress; (ii) the level of involvement by DNA methylation in transcription regulation increases as a cancer advances for majority of the cancer types examined; (iii) transcription regulation in cancer vs. control tissue cells are substantially different, with the former being largely done through direct DNA methylation and the latter mainly done via transcriptional factors; (iv) the altered DNA methylation landscapes in cancer vs. control are predominantly accomplished by DNMTI, TET3 and CBX2, which are predicted to be the result of persistent stresses present in the intracellular and micro-environments of cancer cells, which is consistent with the general understanding about epigenomic functions. Conclusions: Our integrative analyses discovered that a large class of genes is regulated via direct DNA methylation of the genes in cancer, comparing to TFs in normal cells. Such genes fall into a few stress and response pathways. As a cancer advances, the level of involvement by direct DNA methylation in transcription regulation increases for majority of the cancer types examined. 展开更多
关键词 DNA methylation transcriptional regulation micro-environment stress
原文传递
Molecular Characterization, Expression Pattern and Transcriptional Regulation of Figla During Gonad Development in Japanese Founder (Paralichthys olivaceus)
12
作者 QU Jiangbo LI Rui +5 位作者 LIU Yuxiang SUN Minmin YAN Weijie LIU Jinxiang WANG Xubo ZHANG Quanqi 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第4期1037-1050,共14页
The factor in the germline alpha(figla), as a member of the basic helix-loop-helix family, has been reported to be involved in ovary development in mammals and teleosts. However, the regulatory mechanisms of figla in ... The factor in the germline alpha(figla), as a member of the basic helix-loop-helix family, has been reported to be involved in ovary development in mammals and teleosts. However, the regulatory mechanisms of figla in teleosts remain unclear. Here,figla in P. olivaceus(Pofigla) was characterized with encoding a 202 amino acid protein that contains a conserved basic region and helix-loop-helix(HLH) domain. Amino acids alignment and synteny analysis revealed that Pofigla was conserved with the orthologous gene sequences in other vertebrates. The results of qRT-PCR showed Pofigla was maternally inherited during embryonic development. For tissue distribution, Pofigla showed a sexually dimorphic gene expression in the gonad of different genders, with a higher expression in ovary than in testis. In situ hybridization(ISH) results demonstrated Pofigla was specifically expressed in germ cells including oocytes, spermatogonia and spermatocytes. By screening and analyzing two proximal regions(-2966/-2126 and-772/-444) with high promoter activity, we found SOX5, LEF1, FOXP1 and GATA1 may play important roles in the transcriptional regulation of Pofigla. Furthermore, we observed the co-localization between Figla and LEF1 in HEK 293T cells. And the significant up-regulation effect of the canonical Wnt signaling pathway on the expression of Pofigla was found in cultured ovarian cells. This study provided the first evidence that figla not only has an important function in ovary development, but also plays some potential roles in testis development and/or male germ cell differentiation during early testis development in P. olivaceus. The results provide valuable reference in exploring the regulatory network of figla in teleost. 展开更多
关键词 figla transcriptional regulation Wnt signaling pathway gonad development Paralichthys olivaceus
下载PDF
Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation
13
作者 Yan-chun CHE Li JIANG Qi-han LI 《Virologica Sinica》 SCIE CAS CSCD 2008年第6期394-398,共5页
The molecular modifications of Herpes Simplex Virus Type I (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions. The cellular chromatin-remodeling/ assembly is in... The molecular modifications of Herpes Simplex Virus Type I (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions. The cellular chromatin-remodeling/ assembly is involved in HSV-1 associated gene transcriptional regulation in human cells harboring HSV-1 lytic or latent infections. Further investigation on these biological events would provide a better understanding of the mechanisms of HSV-1 viral gene transcriptional regulation 展开更多
关键词 MODIFICATION Herpes simplex virus type (HSV- 1) transcriptional regulation
下载PDF
The BEL1-like transcription factor GhBLH5-A05 participates in cotton response to drought stress
14
作者 Jing-Bo Zhang Yao Wang +4 位作者 Shi-Peng Zhang Fan Cheng Yong Zheng Yang Li Xue-Bao Li 《The Crop Journal》 SCIE CSCD 2024年第1期177-187,共11页
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu... Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05. 展开更多
关键词 Cotton(Gossypium hirsutum) BEL1-like transcription factor Drought stress transcriptional regulation Drought tolerance
下载PDF
Study of Transcription Activity of X-Box Binding Protein 1 Gene in Human Different Cell Lines
15
作者 郭风劲 宋方洲 +2 位作者 张静 李婧 唐勇 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第9期790-799,共10页
Human X-box binding protein 1 (XBP1), an important transcription factor, participates in many signal transduction processes. To further investigate the biological function of XBP1, sequences of XBP1 promoter and its... Human X-box binding protein 1 (XBP1), an important transcription factor, participates in many signal transduction processes. To further investigate the biological function of XBP1, sequences of XBP1 promoter and its two deletion mutants were first determined using bioinformatic analysis. The report vectors containing XBP1 promoter and its deletion mutants were then constructed, namely, p1-XBPlp, p2-XBPlp, and p3-XBPlp. Each reporter vector was separately transfected into HepG2, L02, K562, SMMC-7721, HSF, and Lipocyte lto Cell line using FuGENE 6 transfection reagents. The activity of chloramphenicol acetyltransferase (CAT) in each group of transfected cells was detected by ELISA assay, which in turn reflects the transcription activity of the XBP1 gene promoter. The activity involving p3-XBPlp was the highest in HepG2, which was 12.4-fold of that of pCAT3-Basic. The activities of p3-XBPlp in K562 and SMMC-7721 were the second and the third highest, which were 10.9-fold and 10.0-fold of that of the pCAT3-Basic, respectively. The CAT activity in L02 was lower than that in the above-mentioned abnormal cell, and no reporter activity was detected in HSF and Ito Cell. The XBP1 transcription and expression in K562, HepG2 and SMMC-7721 were found to be higher than that in L02, HSF and Ito cells, based on the results of real-time RT-PCR and Western blot. The XBP1 transcription and expression in L02, HSF was lower, whereas that in Ito cells was totally lacking. The result was similar to that of CAT-ELISA. Therefore, the XBP1 gene promoter can drive its downstream gene expression and its activity is cell line-dependent. The core sequence of XBP1 promoter was found between -227bp and 66bp sequence. This sequence was closely associated with the transcriptional activity of XBP1 promoter. 展开更多
关键词 transcription factor XBP1 promoter CAT ELISA transcription regulation
下载PDF
Transcription of the putative tumor suppressor gene HCCS1 requires binding of ETS-2 to its consensus near the transcription start site 被引量:3
16
作者 Jing De Zhu Qi Fei +4 位作者 Peng Wang Fei Lan Da Qin Mao Hong Yu Zhang Xue Biao Yao 《Cell Research》 SCIE CAS CSCD 2006年第9期780-796,共17页
The hepatocellular carcinoma suppressor 1 (HCCS1) gene was identified by both positional cloning from a predominant region of loss of heterozygosity (17p 13.3) in liver cancer and by functional screening for genes... The hepatocellular carcinoma suppressor 1 (HCCS1) gene was identified by both positional cloning from a predominant region of loss of heterozygosity (17p 13.3) in liver cancer and by functional screening for genes affecting cell proliferation in large-scale transfection assays. Its overexpression results in inhibition of cell proliferation in cell culture and tumor growth in nude mice. To understand its transcription regulation, the promoter architecture has been dissected in detail. The major start of transcription was mapped by primer extension to a C residue, 177 nucleotides upstream of the ATG codon. By assessing the promoter activity of a set of linker-scanning mutants of the minimal promoter (-60 to +148 region) in a transient transfection assay, we found that the +1 to + 40 region is critical to HCCS1 gene transcription, containing binding sites for transcription factors NF-kB (-21 to +7 and +40 to +26), p53 (+29 to +9) and ETS (+4 to +20 and +23 to +39). Biochemical and molecular analyses revealed that the ETS transcription factors ETS-2 and Elf-1 bind to the two ETS sites in situ and contribute significantly to the transcriptionally active state of the HCCS1 gene, while NF-kB, p53 and two other members of the ETS family (ETS-1 and NERF2) appear to play little role. Our observations provide insight into the mechanistic aspects of HCCS1 transcription regulation. 展开更多
关键词 HCCS1 gene transcription regulation ETS p53 NF-KB
下载PDF
INHIBITORY ROLE OF TRANSCRIPTION FACTOR COUP-TFII IN EXPRESSION OF HTERT IN HELA CELLS 被引量:2
17
作者 QiangWang Zeng-liangBai: +2 位作者 LiXuan LinHou BoZhang 《Chinese Medical Sciences Journal》 CAS CSCD 2004年第3期157-163,共7页
To clone and identify the proteins involved in regulating the transcription of hTERT and study the role of genes in both hTERT transcription and telomerase activity. Methods The full cDNA of COUP-TFII was clon... To clone and identify the proteins involved in regulating the transcription of hTERT and study the role of genes in both hTERT transcription and telomerase activity. Methods The full cDNA of COUP-TFII was cloned from HeLa cDNA library by hTERT promoter-based yeast one-hybrid assay and then in-frame inserted into His-tag fusion expression vector pEK318. The His-tag COUP-TFII fusion proteins were purified by Ni-NTA chromatography. The interaction of COUP-TFII with hTERT promoter in vitro was identified by electrophoretic mobility shift assay and Footprint. The role of COUP-TFII in both hTERT transcription and telomerase activity were probed through Luciferase reporter assay, Northern blot, and TRAP-PCR ELISA. Results COUP-TFII could firmly bind to the downstream E-box and the other two binding sites in hTERT promoter. Luciferase reporter assay indicated COUP-TFII could suppress hTERT promoter activity and stable introduction of COUP-TFII into HeLa cells also decreased both endogenous hTERT transcription and telomerase activity. Conclusion The human COUP-TFII can firmly bind to hTERT promoter, and inhibit telomerase activity through decreasing hTERT transcription. It will greatly facilitate understanding of telomerase regulation in normal and cancer cells 展开更多
关键词 COUP-TFII HTERT TELOMERASE yeast one-hybrid assay transcription regulation
下载PDF
The ATF/CREB site is the key element for transcription of the human RNA methyltransferase like1(RNMTL1) gene, a newly discovered 17p13.3 gene 被引量:2
18
作者 JIANXU JINGDEZHU 《Cell Research》 SCIE CAS CSCD 2002年第3期177-197,共21页
The human RNA methyltransferase like 1 gene (RNMTL1) is one of thirteen newly discovered genes within a 116 Kb segment of the chromosome 17pl3.3 that suffers from a high frequent loss of heterozygosity in human hepato... The human RNA methyltransferase like 1 gene (RNMTL1) is one of thirteen newly discovered genes within a 116 Kb segment of the chromosome 17pl3.3 that suffers from a high frequent loss of heterozygosity in human hepatocellular carcinoma in China[1-5]. To understand the molecular mechanisms underlying transcription control of the RNMTL1 gene in human cancers, we decline using of the conventional approach where the cis-elements bound by the known transcription factors are primary targets, and carried out the systematic analyses to dissect the promoter structure and identify/characterize the key cis-elements that are responsible for its strong expression in cell. The molecular approaches applied included 1, the primer extension for mapping of the transcription starts; 2, the transient transfection/reporter assays on a large number of deletion and site-specific mutants of the promoter segment for defining the minimal promoter and the crucial elements within; and 3, the electrophoresis mobility shift assay with specific antibodies for reconfirming the nature of the transcription factors and their cognate cis-elements. We have shown that the interaction of an ATF/CREB element (-38 to -31) and its cognate transcription factors play a predominant role in the promoter activity of the RNMTL1 gene. The secondary DNA structures of the ATF/CREB element play a more vital role in the protein-DNA interaction. Finally, we reported a novel mechanism underlying the YY1 mediated transcription repression, namely, the ATF/CREB dependent transcription-repression by YY1 is executed in absence of its own sequence-specific binding. 展开更多
关键词 RNMTL1 gene ATF/CREB YY1 transcription regulation chromosome 17p133
下载PDF
Tcf7l1 promotes transcription of Kruppel-like factor 4 during Xenopus embryogenesis 被引量:5
19
作者 Qing Cao Yan Shen +2 位作者 Wei Zheng Hao Liu Chen Liu 《The Journal of Biomedical Research》 CAS CSCD 2018年第3期215-221,共7页
Kruppel-like factor 4(Klf4) is a zinc finger transcription factor and plays crucial roles in Xenopus embryogenesis.However, its regulation during embryogenesis is still unclear. Here, we report that Tcf711, a key do... Kruppel-like factor 4(Klf4) is a zinc finger transcription factor and plays crucial roles in Xenopus embryogenesis.However, its regulation during embryogenesis is still unclear. Here, we report that Tcf711, a key downstream transducer of the Wnt signaling pathway, could promote Klf4 transcription and stimulate Klf4 promoter activity in early Xenopus embryos. Furthermore, cycloheximide treatment showed a direct effect on Klf4 transcription facilitated by Tcf711. Moreover, the dominant negative form of Tcf711(dnTcf711), which lacks N-terminus of the β-catenin binding motif, could still activate Klf4 transcription, suggesting that this regulation is Wnt/β-catenin independent.Taken together, our results demonstrate that Tcf711 lies upstream of Klf4 to maintain its expression level during Xenopus embryogenesis. 展开更多
关键词 Kruppel-like factor 4(Klf4) Tcf711 transcription regulation Xenopus laevis
下载PDF
Functions of nuclear factor Y in nervous system development,function and health
20
作者 Pedro Moreira Roger Pocock 《Neural Regeneration Research》 SCIE CAS 2025年第10期2887-2894,共8页
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y... Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression. 展开更多
关键词 axon guidance CCAAT boxes neuronal degeneration neuronal differentiation neuronal regeneration nuclear factor Y complex transcription factor transcriptional regulation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部