期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
Galectin 2 regulates JAK/STAT3 signaling activity to modulate oral squamous cell carcinoma proliferation and migration in vitro
1
作者 XINRU FENG LI XIAO 《BIOCELL》 SCIE 2024年第5期793-801,共9页
Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be expl... Background:Galectin 2(LGALS2)is a protein previously reported to serve as a mediator of disease progression in a range of cancers.The function of LGALS2 in oral squamous cell carcinoma(OSCC),however,has yet to be explored,prompting the present study to address this literature gap.Methods:Overall,144 paired malignant tumor tissues and paracancerous OSCC patient samples were harvested and the LGALS2 expression levels were examined through qPCR and western immunoblotting.The LGALS2 coding sequence was introduced into the pcDNA3.0 vector,to enable the overexpression of this gene,while an LGALS2-specific shRNA and corresponding controls were also obtained.The functionality of LGALS2 as a regulator of the ability of OSCC cells to grow and undergo apoptotic death in vitro was assessed through EdU uptake and CCK-8 assays,and flow cytometer,whereas a Transwell system was used to assess migratory activity and invasivity.An agonist of the Janus Kinase 2(JAK2)/Signal Transducer and Activator of Transcription 3(STAT3)pathway was also used to assess the role of this pathway in the context of LGALS2 signaling.Results:Here,we found that lower LGALS2 protein and mRNA expression were evident in OSCC tumor tissue samples,and these expression levels were associated with clinicopathological characteristics and patient survival outcomes.Silencing LGALS2 enhanced proliferation in OSCC cells while rendering these cells better able to resist apoptosis.The opposite was instead observed after LGALS2 was overexpressed.Mechanistically,the ability of LGALS2 to suppress the progression of OSCC was related to its ability to activate the JAK/STAT3 signaling axis.Conclusion:Those results suggest a role for LGALS2 as a suppressor of OSCC progression through its ability to modulate JAK/STAT3 signaling,supporting the potential utility of LGALS2 as a target for efforts aimed at treating OSCC patients. 展开更多
关键词 LGALS2 Oral squamous cell carcinoma(OSCC) Janus Kinase 2/Signal Transducer and Activator of Transcription 3(JAK2-STAT3) PROGRESSION
下载PDF
Detection for Transcriptional Activity of Alternaria Tenuissim Protein Elicitor in Yeast Two-hybrid System 被引量:3
2
作者 刘延锋 邱德文 +1 位作者 曾洪梅 杨秀芬 《Agricultural Science & Technology》 CAS 2008年第1期64-66,共3页
The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain ... The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain EGY48 [p8op-lacZ] by PEG/LiAC, and the transcriptional activity of bait vector was detected. The results showed that recombinant bait plasmid pLexA-PEMG1 was constructed, for the two bands of recombinant bait plasmid in agarose gel eleetrophoresis were expected after digesting by restriction endonuclease EcoR I and Xho I. Therefore, the recombinant bait plasmid could be used in yeast two-hybrid system to screen a cDNA library. 展开更多
关键词 PeaT1 Yeast two-hybrid Transcriptional activity
下载PDF
SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity 被引量:3
3
作者 Chunlin Zuo Lijun Wang +11 位作者 Raghavendra M.Kamalesh Margot E.Bowen Douglas C.Moore Mark S.Dooner Anthony M.Reginato Qian Wu Christoph Schorl Yueming Song Matthew L.Warman Benjamin G.Neel Michael G.Ehrlich Wentian Yang 《Bone Research》 CAS CSCD 2018年第2期132-144,共13页
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCP... Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration. 展开更多
关键词 SHP2 regulates skeletal cell modifying SOX9 expression transcriptional activity SOX
下载PDF
Identification and Promoter Activity Analysis of Porcine miR-181 and miR-1
4
作者 ZHANG Hai-xin ZHANG Rui +4 位作者 LIU Yi-nan WANG Dao-lin ZHAO Yan-he REN Zhu-qing XIONGYuan-zhu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第6期986-992,共7页
Since its discovery a decade ago, microRNA has been identified as one of the major regulatory gene families in eukaryotic cells. Many functions of microRNAs have been revealed both in flora and fauna in recent years, ... Since its discovery a decade ago, microRNA has been identified as one of the major regulatory gene families in eukaryotic cells. Many functions of microRNAs have been revealed both in flora and fauna in recent years, but the transcriptional regulation of microRNA genes is not well-understood. In the present study, a series of primers were designed in the 2 000 nt upstream regions of porcine miR-181 and miR-1 and then the sequences were cloned into pGL3-basic vector to test their transcriptional activity. Dual-luciferase reporter assays showed that, the activity of 5"-flanking sequence of miR-181 started on construct -51, decreasing with the length of the fragment up to -444. The upstream 590 bp confer maximal transcriptional activity and the basal promoter activity is located within the -82 to +16 bp region. For miR-1, the activity starts on construct -50, decreasing with the length of the fragment up to -1 254 in despite of a bit of fluctuation, and the basal promoter activity is located within the -50 to +47 bp region. Furthermore, some putative regulation elements of both miR-181 and miR-1 were located. In addition, tissue distribution revealed that miR-181 is expressed at a relatively low level. 展开更多
关键词 miR-181 MIR-1 PIGS PROMOTER transcriptional activity
下载PDF
EFFECT OF HEMATOPORPHYRIN DERIVATIVE (HPD) PLUS LIGHT ON TRANSCRIPTION ACTIVITY IN THE NUCLEUS
5
作者 龚秀兰 陈煜清 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1992年第1期40-44,共5页
To elucidate the mechanism of photodynamic damage of cells, the effect of HPD plus light on transcriptlonal ectlvlty In the mucleus Isolate from the normal rat liver was studied in vitor by 3H- UTP incorporation into ... To elucidate the mechanism of photodynamic damage of cells, the effect of HPD plus light on transcriptlonal ectlvlty In the mucleus Isolate from the normal rat liver was studied in vitor by 3H- UTP incorporation into RNA. Measurements of fluorescence spectrum showed that HPD was bound to the nucleus and its fluorescence Intensity Increased with the Increase of HPD concentration. The experimental results Indicated that no changes could be observed when either HPD or light was used alone. Whereas the nuclear transcription activity was found to be inhibited significantly by both HPD and light treatment, and the degree of Inhibition was dependent on the HPD concentration and the time of exposure to light. After treatment by 3 μg/ ml HPD, the inhibition rate of the nuclear transcription activity was 23% ,45% ,69% ,80% and 90%, respectively for light exposure of 2, 5, 10, 20 and 30 minutes. Our results suggested that dose-dependent decreases in the nuclear transcription activity, and marked inhibition of the activity was found in the range from 3 to 7 μg/ml HPD following exposure to light. 展开更多
关键词 HPD EFFECT OF HEMATOPORPHYRIN DERIVATIVE PLUS LIGHT ON TRANSCRIPTION activity IN THE NUCLEUS
下载PDF
Regulatory mechanisms of iron homeostasis in maize mediated by ZmFIT 被引量:1
6
作者 Suzhen Li Shuai Ma +6 位作者 Zizhao Song Yu Li Xiaoqing Liu Wenzhu Yang Tianyu Wang Xiaojin Zhou Rumei Chen 《The Crop Journal》 SCIE CSCD 2024年第5期1426-1436,共11页
Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-relat... Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations. 展开更多
关键词 Iron homeostasis Transcription activation complex Zea mays ZmFIT
下载PDF
Apigenin ameliorates imiquimod-induced psoriasis in C57BL/6J mice by inactivating STAT3 and NF-κB 被引量:2
7
作者 Xianshe Meng Shihong Zheng +11 位作者 Zequn Yin Xuerui Wang Daigang Yang Tingfeng Zou Huaxin Li Yuanli Chen Chenzhong Liao Zhouling Xie Xiaodong Fan Jihong Han Yajun Duan Xiaoxiao Yang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期211-224,共14页
Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid ... Psoriasis is a chronic autoimmune disease featured by patches on the skin.It is caused by malfunction of immune cells and keratinocytes with inflammation as one of its key features.Apigenin(API)is a natural flavonoid with anti-inflammatory and immunoregulatory properties.Therefore,we speculated that API can ameliorate psoriasis,and determined its effect on the development of psoriasis by using imiquimod(IMQ)-induced psoriasis mouse model.Our results showed that API attenuated IMQ-induced phenotypic changes,such as erythema,scaling and epidermal thickening,and improved splenic hyperplasia.Abnormal differentiation of immune cells was restored in API-treated mice.Mechanistically,we revealed that API is a key regulator of signal transducer activator of transcription 3(STAT3).API regulated immune responses by reducing interleukin-23(IL-23)/STAT3/IL-17A axis.Moreover,it suppressed IMQ-caused cell hyperproliferation by inactivating STAT3 through regulation of extracellular signal-regulated kinase 1/2 and nuclear factor-κB(NF-κB)pathway.Furthermore,API reduced expression of inflammatory cytokines through inactivation of NF-κB.Taken together,our study demonstrates that API can ameliorate psoriasis and may be considered as a strategy for psoriasis treatment. 展开更多
关键词 PSORIASIS APIGENIN IMIQUIMOD Inflammation Signal transducer activator of transcription 3 (STAT3) Nuclear factor-κB(NF-κB)
下载PDF
Wheat kinase TaSnRK2.4 forms a functional module with phosphatase TaPP2C01 and transcription factor TaABF2 to regulate drought response
8
作者 Yanyang Zhang Xiaoyang Hou +7 位作者 Tianjiao Li Ziyi Wang Jiaqi Zhang Chunlin Zhang Xianchang Liu Xinxin Shi Wanrong Duan Kai Xiao 《The Crop Journal》 SCIE CSCD 2024年第2期384-400,共17页
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize... SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat. 展开更多
关键词 Triticum aestivum SnRK2.4 kinase Gene expression Protein interaction Transgene analysis Transcriptional activation
下载PDF
The Magnaporthe oryzae effector Avr-PikD suppresses rice immunity by inhibiting an LSD1-like transcriptional activator
9
作者 Jiayuan Guo Yiling Wu +8 位作者 Jianqiang Huang Kaihui Yu Meilian Chen Yijuan Han Zhenhui Zhong Guodong Lu Yonghe Hong Zonghua Wang Xiaofeng Chen 《The Crop Journal》 SCIE CSCD 2024年第2期482-492,共11页
Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs ... Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae. 展开更多
关键词 Magnaporthe oryzae Avirulence effector Avr-PikD Effector-triggered susceptibility Rice immunity Transcriptional activator
下载PDF
Integrated analyses of transcriptomics and network pharmacology reveal leukocyte characteristics and functional changes in subthreshold depression,elucidating the curative mechanism of Danzhi Xiaoyao powder
10
作者 Kunyu Li Leiming You +5 位作者 Jianhua Zhen Guangrui Huang Ting Wang Yanan Cai Yunan Zhang Anlong Xu 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第1期3-20,共18页
Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we id... Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we identified differentially expressed genes(DEGs)in leukocytes of SD compared to healthy controls,deciphered their functions and pathways,and identified the hub genes of SD.We also assessed changes in leukocyte transcription factor activity in patients with SD using the TELis platform.The Connectivity Map database was retrieved to screen candidate drugs for SD.Based on network pharmacology,we elucidated the"multi-component,multi-target,and multi-pathway"mechanism of DZXY in the treatment of SD.Results:We identified 1080 DEGs(padj<0.05 and|log2(fold change)l≥1&protein coding)in the leukocytes of patients with SD.These DEGs,including hub genes,were primarily involved in immune and inflammatory response-related processes.Transcription factor activity analysis revealed similarities between the leukocyte transcriptome profile in SD and the conserved transcriptional response to adversities in immune cells.Connectivity Map analysis identified 28 potential drugs for SD treatment,particularly SB-202190 and TWS-119.Constructing the"Direct Compounds-Direct Targets-Pathways"network for DZXY and SD revealed the curative mechanisms of DZXY in SD,primarily including inflammatory response,lipid metabolism,immune response,and other processes.Conclusion:These results provide new insights into the characteristics and functional changes of leukocytes in SD,partially illustrate the pathogenesis of SD,and suggest potential drugs for SD.The curative mechanisms of DZXY in SD are also partially elucidated. 展开更多
关键词 Subthreshold depression LEUKOCYTE mRNAbiomarker CTRA Transcription factor activity CMAP Danzhi Xiaoyaopowder Networkpharmacology
下载PDF
Immunotherapeutic hydrogel for co-delivery of STAT3 siRNA liposomes and lidocaine hydrochloride for postoperative comprehensive management of NSCLC in a single application
11
作者 Xianglei Fu Yanbin Shi +12 位作者 Zili Gu Hengchang Zang Lian Li Qingjie Wang Yongjun Wang Xiaogang Zhao Hang Wu Shengnan Qiu Yankun Zhang Jiamin Zhou Xiangqin Chen Hua Shen Guimei Lin 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第3期115-130,共16页
Despite standard treatment for non-small cell lung cancer(NSCLC)being surgical resection,cancer recurrence and complications,such as induction of malignant pleural effusion(MPE)and significant postoperative pain,usual... Despite standard treatment for non-small cell lung cancer(NSCLC)being surgical resection,cancer recurrence and complications,such as induction of malignant pleural effusion(MPE)and significant postoperative pain,usually result in treatment failure.In this study,an alginate-based hybrid hydrogel(SOG)is developed that can be injected into the resection surface of the lungs during surgery.Briefly,endoplasmic reticulum-modified liposomes(MSLs)pre-loaded with the signal transducer and activator of transcription 3(STAT3)small interfering RNA and lidocaine hydrochloride are encapsulated in SOG.Once applied,MSLs strongly downregulated STAT3 expression in the tumor microenvironment,resulting in the apoptosis of lung cancer cells and polarization of tumor-associated macrophages towards the M1-like phenotype.Meanwhile,the release of lidocaine hydrochloride(LID)was beneficial for pain relief and natural killer cell activation.Our data demonstrated MSL@LID@SOG not only efficiently inhibited tumor growth but also potently improved the quality of life,including reduced MPE volume and pain relief in orthotopic NSCLC mouse models,even with a single administration.MSL@LID@SOG shows potential for comprehensive clinical management upon tumor resection in NSCLC,and may alter the treatment paradigms for other cancers. 展开更多
关键词 LIPOSOME HYDROGEL Signal transducer and activator of transcription 3 Non-small cell lung cancer MACROPHAGE
下载PDF
STAT3-Dependent Effects of Polymeric Immunoglobulin Receptor in Regulating Interleukin-17 Signaling and Preventing Autoimmune Hepatitis
12
作者 Ting Li Tongtong Pan +14 位作者 Nannan Zheng Xiong Ma Xiaodong Wang Fang Yan Huimian Jiang Yuxin Wang Hongwei Lin Jing Lin Huadong Zhang Jia Huang Lingming Kong Anmin Huang Qingxiu Liu Yongping Chen Dazhi Chen 《Engineering》 SCIE EI CAS CSCD 2024年第5期209-222,共14页
One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between... One-third of patients with autoimmune hepatitis(AIH)have cirrhosis at the time of diagnosis.The relevance of these variables,although unknown,is believed to be critical in AIH because of suspected interactions between the gut microbiome and genetic factors.Dysbiosis of the gut flora and elevated polymeric immunoglobulin receptor(pIgR)levels have been observed in both patients and mouse models.Moreover,there is a direct relationship between pIgR expression and transaminase levels in patients with AIH.In this study,we aimed to explore how pIgR influences the secretion of regenerating islet-derived 3 beta(Reg3b)and the flora composition in AIH using in vivo experiments involving patients with AIH and a concanavalin A-induced mouse model of AIH.Reg3b expression was reduced in pIgR gene(Pigr)-knockout mice compared to that in wild-type mice,leading to increased microbiota disruption.Conversely,exogenous pIgR supplementation increased Reg3b expression and maintained microbiota homeostasis.RNA sequencing revealed the participation of the interleukin(IL)-17 signaling pathway in the regulation of Reg3b through pIgR.Furthermore,the introduction of external pIgR could not restore the imbalance in gut microbiota in AIH,and the decrease in Reg3b expression was not apparent following the inhibition of signal transducer and activator of transcription 3(STAT3).In this study,pIgR facilitated the upregulation of Reg3b via the STAT3 pathway,which plays a crucial role in preserving the balance of the intestinal microbiota in AIH.Through this research,we discovered new molecular targets that can be used for the diagnosis and treatment of AIH. 展开更多
关键词 Autoimmune hepatitis Polymeric immunoglobulin receptor Regenerating islet-derived 3 beta Intestinal microbiota Signal transducer and activator of transcription 3
下载PDF
Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression
13
作者 Damián Sánchez-Ramírez Mónica G Mendoza-Rodríguez +7 位作者 Omar R Alemán Fernando A Candanedo-González Miriam Rodríguez-Sosa Juan JoséMontesinos-Montesinos Mauricio Salcedo Ismael Brito-Toledo Felipe Vaca-Paniagua Luis I Terrazas 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期1705-1724,共20页
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ... Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role. 展开更多
关键词 Cancer-associated fibroblasts Signal transducer and activator of transcription signaling Colorectal cancer IMMUNITY IMMUNOSUPPRESSION
下载PDF
Electroacupuncture targeting the immune system to alleviate sepsis
14
作者 Mengyue Fang Yuye Lan +6 位作者 Man Li Chennan Li Bin Xu Yan Ma Sulukkana Noiprasert Xianghong Jing Lingling Yu 《Acupuncture and Herbal Medicine》 2024年第1期56-67,共12页
Sepsis is a life-threatening inflammatory syndrome with high morbidity and mortality rates.However,options for sepsis are still limited to general treatment in intensive care units(ICUs),and effective therapies that i... Sepsis is a life-threatening inflammatory syndrome with high morbidity and mortality rates.However,options for sepsis are still limited to general treatment in intensive care units(ICUs),and effective therapies that improve sepsis survival are required.Immune disturbances play a vital role in the pathology of sepsis and are associated with protracted inflammation,susceptibility to infections,and death.Therefore,many investigators have focused on the potential benefits of immunomodulation therapy for sepsis.Electroacupuncture(EA)has been practiced in clinics for many years and has shown advantages in treating infectious diseases.Over the last few decades,our understanding of the efficacy and mechanisms of EA in sepsis has undergone considerable developments.We searched the literature regarding“CNKI,Wan Fang Data,VIP Database,PubMed,and Ingenta Connect”from 2010 to 2023,using the keywords“sepsis”“septic”and“electroacupuncture”and 336 sources were searched.Finally,we included 82 studies that targeted the immune system to determine EA’s anti-inflammatory and immunomodulatory effects on sepsis.In this review,we found that EA has clinical benefits in relieving septic inflammation,improving immune function,and attenuating related multi-organ injury through several mechanisms,such as activation of the cholinergic anti-inflammatory pathway(CAP),vagaladrenal axis,inhibition of the nuclear factor Kappa-B(NF-κB)signaling pathway,signal transducers and activators of transcription(STAT)signaling pathway,and improvement of immune cell function.Therefore,EA may be a promising complementary therapy for sepsis treatment.We also expect these data will contribute to further studies on EA in sepsis. 展开更多
关键词 Cholinergic anti-inflammatory pathway ELECTROACUPUNCTURE Nuclear factor Kappa-B SEPSIS Signal transducers and activators of transcription Vagal-adrenal axis
下载PDF
Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway
15
作者 Meng-Hao Lyu Ce Bian +3 位作者 Yi-Ping Dou Kang Gao Jun-Ji Xu Pan Ma 《World Journal of Stem Cells》 SCIE 2024年第5期560-574,共15页
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign... BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation. 展开更多
关键词 MACROPHAGES INTERLEUKIN-10 Bone marrow mesenchymal stem cells Signal transducer and activator of transcription 3 Inflammatory response
下载PDF
Gossypol acetic acid regulates leukemia stem cells by degrading LRPPRC via inhibiting IL-6/JAK1/STAT3 signaling or resulting mitochondrial dysfunction
16
作者 Cheng-Jin Ai Ling-Juan Chen +2 位作者 Li-Xuan Guo Ya-Ping Wang Zi-Yi Zhao 《World Journal of Stem Cells》 SCIE 2024年第4期444-458,共15页
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against... BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML. 展开更多
关键词 Leukemia stem cells Gossypol acetic acid Reactive oxygen species Mitochondrial dysfunction Interleukin 6/janus kinase 1/signal transducer and activator of transcription 3 signaling
下载PDF
Mechanism of Yanghe Pingchaun granules on airway remodeling in asthmatic rats based on IL-6/JAK2/STAT3 signaling axis
17
作者 LV Chuan ZHU Hui-zhi +4 位作者 LIU Xiang-guo CAO Xiao-mei XIA Yong-qi ZHANG Qiu-ping YU Zi-qi 《Journal of Hainan Medical University》 CAS 2024年第1期15-21,共7页
Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(... Objective: To investigate the effects of Yanghe Pingchuan Granules on airway remodeling in asthmatic rats, and to explore the mechanism of Interleukin-6/Janus kinase 2/ Signal transducing activator of transcription 3(IL-6/JAK2/STAT3) signal axis. Methods: We separated 42 healthy male SD rats into two groups, a control group (7) and a model group (35).The model group was sensitized with a combination of ovalbumin (OVA) and aluminum hydroxide for 2 weeks, while the control group was given an equal amount of physiological saline.After 2 weeks, the modeling group was randomly divided into Model group, Yanghe Pingchuan Granules high, medium and low dose groups and Dexamethasone group, each group consisted of 7 animals. After 4 weeks, OVA atomization and gavage were used for stimulation and treatment. Yanghe Pingchuan Granules high, middle and low groups were given 15.48, 7.74, 3.87 g∙kg-1 Yanghe Pingchuan Granules daily, dexamethasone group was given 0.0625 mg∙kg-1 dexamethasone daily, and the other groups were given the same amount of normal saline. HE, PAS and Masson staining were used to observe the lung histopathological changes in rats. The levels of interleukin-6, IL-23 and IL-17A were detected by ELISA. The expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 in lung tissues were detected by Western blot. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels of IL-6, JAK2 and STAT3 in rat lung tissue. Results: The lung tissue structure of the model group was severely damaged compared to the control group, accompanied by a great many of inflammatory cell infiltration, goblet cell hyperplasia, subepithelial collagen fiber deposition and airway epithelial thickening were more obvious. The expressions of IL-6, IL- 23 and IL-17A in serum were significantly increased (P<0.01), the protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and the mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly increased (P<0.01);Compared with the model group, inflammatory cell infiltration, goblet cell proliferation, subepithelial collagen fiber deposition and airway epithelial thickening were significantly reduced in each administration group, and the expressions of IL-6, IL-23 and IL-17A in serum were significantly decreased (P< 0.01). The protein expression levels of JAK-2, P-JAK2, STAT3 and P-STAT3 and mRNA expression levels of IL-6, JAK2 and STAT3 in lung tissue were significantly decreased (P<0.01). Conclusion: Yanghe Pingchuan Granules can significantly alleviate airway remodeling in asthmatic rats, and its mechanism may be through inhibiting the IL-6/JAK2/STAT3 signal axis. 展开更多
关键词 Yanghe Pingchuan Granules Interleukin-6/Janus kinase 2/Signal transducing activator of transcription 3(IL-6/JAK2/STAT3)signal axis Asthma Airway remodeling Mechanism study
下载PDF
A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers 被引量:10
18
作者 Tina S Mehta Heng Lu +6 位作者 Xianhui Wang Alison M Urvalek Kim-Hang H Nguyen Farah Monzur Jojo D Hammond Jameson Q Ma Jihe Zhao 《Cell Research》 SCIE CAS CSCD 2009年第9期1098-1109,共12页
Kruppel-like factor 8 (KLF8) transcription factor plays a critical role in cell cycle progression, oncogenic transformation, epithelial to mesenchymal transition and invasion. However, its nuclear localization signa... Kruppel-like factor 8 (KLF8) transcription factor plays a critical role in cell cycle progression, oncogenic transformation, epithelial to mesenchymal transition and invasion. However, its nuclear localization signal(s) (NLS) has not been identified. KLF8 shares with other KLFs monopartite NLSs (mNLS) and C2H2 zinc fingers (ZFs), both of which have been shown to be the NLSs for some other KLFs. In this report, using PCR-directed mutagenesis and immunofluorescent microscopy, we show that disruption of the mNLSs, deletion of any single ZF, or mutation of the Zn^2+-binding or DNA-contacting motifs did not affect the nuclear localization of KLF8. Deletion of 〉1.5 ZFs from Cterminus, however, caused cytoplasmic accumulation of KLF8. Surprisingly, deletion of amino acid (aa) 151-200 region almost eliminated KLF8 from the nucleus. S165A, K171E or K171R mutation, or treatment with PKC inhibitor led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that KLF8 interacted with importin-β and this interaction required the ZF motif. Deletion of aa 1-150 or 201-261 region alone did not alter the nuclear localization. BrdU incorporation and cyclin D1 promoter luciferase assays showed that the KLF8 mutants defective in nuclear localization could not promote DNA synthesis or cyclin D1 promoter activation as the wild-type KLF8 did. Taken together, these results suggest that KLF8 has two NLSs, one surrounding S165 and K171 and the other being two tandem ZFs, which are critical for the regulation of KLF8 nuclear localization and its cellular functions. 展开更多
关键词 KLF8 nuclear localization signal IMPORTIN DNA synthesis transcriptional activity
下载PDF
New insights into p53 activation 被引量:9
19
作者 Christopher L Brooks Wei Gu 《Cell Research》 SCIE CAS CSCD 2010年第6期614-621,共8页
The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs... The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs a damaged cell down either a cell growth arrest or an apoptotic pathway remain poorly understood. Evidence suggests that the in vivo functions of p53 seem to balance the cell-fate choice with the type and severity of damage that occurs. The concept of antirepression, or inhibition of factors that normally keep p53 at bay, may help explain the physiological mechanisms for p53 activation. These factors also provide novel chemotherapeutic targets for the reactivation of p53 in tumors harboring a wild-type copy of the gene. 展开更多
关键词 MDM2 antirepression DESTABILIZATION UBIQUITINATION transcriptional activation and stability
下载PDF
Inhibition of signal transducer and activator of transcription 3 expression by RNA interference suppresses invasion through inducing anoikis in human colon cancer cells 被引量:51
20
作者 Yu Fan You-Li Zhang +4 位作者 Ying Wu Wei Zhang Yin-Huan Wang Zhao-Ming Cheng Hua Li 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第3期428-434,共7页
AIM:To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Si... AIM:To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Signal transducer and activator of transcription 3 (STAT3) was transfected into HT29 colon cancer cells. STAT3 protein level and DNA-binding activity of STAT3 was evaluated by western blotting and electrophoretic mobility shift assay (EMSA), respectively. We studied the anchorage-independent growth using colony formation in soft agar, and invasion using the boyden chamber model, anoikis using DNA fragmentation assay and terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), respectively. Western blot assay was used to observe the protein expression of Bcl-xL and survivin in colon cancer HT29 cells. RESULTS: RNA interference (RNAi) mediated by siRNA leads to suppression of STAT3 expression in colon cancer cell lines. Suppression of STAT3 expression by siRNA could inhibit anchorage-independent growth, and invasion ability, and induces anoikis in the colon cancer cell line HT29. It has been shown that knockdown of STAT3 expression by siRNA results in a reduction in expression of Bcl-xL and survivin in HT29 cells. CONCLUSION: These results suggest that STAT3 siRNA can inhibit the invasion ability of colon cancer cells through inducing anoikis, which antiapoptotic genes survivin and Bcl-xL contribute to regulation of anoikis.These studies indicate STAT3 siRNA could be a useful therapeutic tool for the treatment of colon cancer. 展开更多
关键词 Colon cancer INVASION Signal transducerand activator of transcription 3 ANOIKIS
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部