A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti...A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.展开更多
Spinel ferrites NiFeOsupported Ru catalysts have been prepared via a simple sol–gel route and applied for converting biomass-derived furfural to 2-methylfuran. The as-prepared catalysts were characterized by thermogr...Spinel ferrites NiFeOsupported Ru catalysts have been prepared via a simple sol–gel route and applied for converting biomass-derived furfural to 2-methylfuran. The as-prepared catalysts were characterized by thermogravimetric analysis(TG), Nadsorption–desorption, X-ray diffraction(XRD), scanning electronic microscopy(SEM), and X-ray photoelectron spectroscopy(XPS). Results showed that the catalysts had well-dispersed Ru active sites and large surface area for calcination temperature ranging from 300 to 500 ℃. The conversion of biomass-derived furfural into 2-methylfuran was conducted over Ru/NiFeOthrough catalytic transfer hydrogenation in liquid-phase with 2-propanol as the hydrogen source. A significantly enhanced activity and increased 2-methylfuran yield have been achieved in this study. Under mild conditions(180 ℃ and 2.1 MPa N), the conversion of furfural exceeds 97% and 2-methylfuran yield was up to 83% over the catalyst containing 8 wt% Ru. After five repeated uses, the catalytic activity and the corresponding product yield remained almost unchanged. The excellent catalytic activity and recycling performance provide a broad prospects for various practical applications.展开更多
A room-temperature electrochemical strategy for hydrogenation(deuteration)and reverse dehydrogenation of N-heterocycles over a bifunctional MoNi_(4)electrode is developed,which includes the hydrogenation of quinoxalin...A room-temperature electrochemical strategy for hydrogenation(deuteration)and reverse dehydrogenation of N-heterocycles over a bifunctional MoNi_(4)electrode is developed,which includes the hydrogenation of quinoxaline using H2O as the hydrogen source with 80%Faradaic efficiency and the reverse dehydrogenation of hydrogen-rich 1,2,3,4-tetrahydroquinoxaline with up to 99%yield and selectivity.The in situ generated active hydrogen atom(H^(*))is plausibly involved in the hydrogenation of quinoxaline,where a consecutive hydrogen radical coupled electron transfer pathway is proposed.Notably,the MoNi_(4)alloy exhibits efficient quinoxaline hydrogenation at an overpotential of only 50 mV,owing to its superior water dissociation ability to provide H^(*)in alkaline media.In situ Raman tests indicate that the Ni^(Ⅱ)/Ni^(Ⅲ)redox couple can promote the dehydrogenation process,representing a promising anodic alternative to low-value oxygen evolution.Impressively,electrocatalytic deuteration is easily achieved with up to 99%deuteration ratios using D2O.This method is capable of producing a series of functionalized hydrogenated and deuterated quinoxalines.展开更多
The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-o-tolylphosphino)-benzyl]cyclohexane-1,2-diamine(2) were employed for asymmetric transfer hydrogenation of aro...The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-o-tolylphosphino)-benzyl]cyclohexane-1,2-diamine(2) were employed for asymmetric transfer hydrogenation of aromatic ketones, giving the corresponding optically active alcohols with high activities(up to 99% conversion) and excellent enantioselectivities(up to 96% e.e.) under mild conditions. The chiral ruthenium(Ⅱ) complex (R,R)-3 has been prepared and characterized by NMR and X-ray crystallography.展开更多
Photocatalytic hydrogenation of furfural offers an ideal method for selective biomass upgrading into value-added chemicals or fuel additives under mild conditions. However, it is still challenging to control the produ...Photocatalytic hydrogenation of furfural offers an ideal method for selective biomass upgrading into value-added chemicals or fuel additives under mild conditions. However, it is still challenging to control the product selectivity due to side reactions of functional groups and reactive radical intermediates.Herein, photocatalytic transfer hydrogenation of furfural was studied using the TiO_(2)-based photocatalysts with alcohols as both the solvent and hydrogen donor. Ultralow loading metal supported on TiO_(2),together with adding a small amount of water in the system, were demonstrated to greatly increase the selectivity of furfuryl alcohol product. Electron paramagnetic resonance(EPR), ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) measurements gave evidence that ultralow loading Pt or Pd on TiO_(2)increase the oxygen vacancy concentration and the photogenerated charge separation efficiency, which accelerates the photocatalytic reduction of furfural. In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and mechanistic studies confirmed that photogenerated holes and electrons are active species, with dissociatively adsorbed methanol being directly oxidized by holes,furfural hydrogenated by protons and electrons and H_(2)O modifying the intermediate diffusion which contributes to high selectivity of furfuryl alcohol. This work demonstrates a simple approach to design photocatalysts and tune product selectivity in biomass valorization.展开更多
Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its ...Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.展开更多
We present an efficient approach for the chemoselective synthesis of arylamines from nitroarenes and formate over an oxygen-implanted MoS2 catalyst(O-MoS2).O-MoS2 was prepared by incomplete sul idation and reduction...We present an efficient approach for the chemoselective synthesis of arylamines from nitroarenes and formate over an oxygen-implanted MoS2 catalyst(O-MoS2).O-MoS2 was prepared by incomplete sul idation and reduction of an ammonium molybdate precursor.A number of Mo-O bonds were implanted in the as-synthesized ultrathin O-MoS2 nanosheets.As a consequence of the different coordination geometries of O(Mo O2) and S(MoS2),and lengths of the Mo-O and Mo-S bonds,the implanted Mo-O bonds induced obvious defects and more coordinatively unsaturated(CUS) Mo sites in O-MoS2,as confirmed by X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,high resolution transmission electron microscopy,and extended X-ray absorption fine structure characterization of various MoS2-based materials.O-MoS2 with abundant CUS Mo sites was found to efficiently catalyze the chemoselective reduction of nitroarenes to arylamines.展开更多
Methanol is a safe, economic and easy-to-handle hydrogen source. It has rarely been used in transfer hydrogenation reactions, however. We herein report that a cyclometalated rhodium complex, rhodacycle, catalyzes high...Methanol is a safe, economic and easy-to-handle hydrogen source. It has rarely been used in transfer hydrogenation reactions, however. We herein report that a cyclometalated rhodium complex, rhodacycle, catalyzes highly chemoselective hydrogenation of α,β-unsaturated ketones with methanol as the hydrogen source. A wide variety of chalcones, styryl methyl ketones and vinyl methyl ketones, including sterically demanding ones, were reduced to the saturated ketones in refluxing methanol in a short reaction time, with no need for inter gas protection, and no reduction of the carbonyl moieties was observed. The catalysis described provides a practically easy and operationally safe method for the reduction of olefinic bonds in α,β-unsaturated ketone compounds.展开更多
The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was contr...The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was controllable by adjusting the ratio of two metal precursors,copper formate(Cuf)and nickel acetate tetrahydrate(Ni(OAc)_(2)·4H_(2)O).Ni/Cu NPs were further anchored on graphene oxide(GO)to prepare a magnetic composite catalyst,called Ni/Cu-GO.The dispersibility of Ni/Cu NPs in solution was enhanced by GO anchoring to prevent the sintering and aggregation during the reaction process,thereby ensuring the catalytic and cycling performance of the catalyst.The catalytic transfer hydrogenation(CTH)reaction of nitroaromatics was investigated when ammonia borane was used as the hydrogen source.Cu dominated the main catalytic role in the reaction,while Ni played a synergistic role of catalysis and providing magnetic properties for separation.The Ni_(7)/Cu_(3)-GO catalyst exhibited the best catalytic performance with the conversion and yield of 99%and 96%,respectively,when 2-methyl-5-nitrophenol was used as the substrate.The Ni_(7)/Cu_(3)-GO catalyst also exhibited excellent cyclic catalytic performance with the 5-amino-2-methylphenol yield of above 90%after six cycles.In addition,the Ni_(7)/Cu_(3)-GO catalyst could be quickly recycled by magnetic separation.Moreover,the Ni_(7)/Cu_(3)-GO catalyst showed good catalytic performance for halogen-containing nitroaromatics without dehalogenation.展开更多
Three stable 4-substituted pyridine-based ruthenium(II)complexes[RuCl2(PPh3)L](L=4-R-2,6-bis (diethylaminomethylene)pyridine,R=Br,H or allyloxy)were synthesized.The catalytic activities of the complexes toward...Three stable 4-substituted pyridine-based ruthenium(II)complexes[RuCl2(PPh3)L](L=4-R-2,6-bis (diethylaminomethylene)pyridine,R=Br,H or allyloxy)were synthesized.The catalytic activities of the complexes toward transfer hydrogenation from alcohols to ketones were investigated.The electronic effects of the para-substituent in the pyridyl ring were probed and we found that the electron-donating group increased the catalytic activity.The result suggests that an electron-donating group is probably preferential for linking the catalytic ruthenium complex and the chemically inert supporting molecules such as a carbosilane dendrimer.展开更多
Antidepressant duloxetine (1) was prepared via asymmetric transfer hydrogenation of 3-(dimethylamino)-1-(thiophen-2- yl)propan-1-one (3). The Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes of several chiral ligands...Antidepressant duloxetine (1) was prepared via asymmetric transfer hydrogenation of 3-(dimethylamino)-1-(thiophen-2- yl)propan-1-one (3). The Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes of several chiral ligands were examined as the catalyst and (S,S)-N-tosyl-1,2-diphenyl ethylenediamine (TsDPEN)-Ru(Ⅱ) complex was found to provide good yield and excellent enantioselectivity. 2007 Ming Yan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Developing chiral solid catalysts for asymmetric catalysis is desirable for the elimination of homogeneous catalysis flaws but remains an immense challenge.Herein,we report the immobilization of TsDPEN on SBA‐15 with...Developing chiral solid catalysts for asymmetric catalysis is desirable for the elimination of homogeneous catalysis flaws but remains an immense challenge.Herein,we report the immobilization of TsDPEN on SBA‐15 with an ionic liquid(IL)linkage via the one‐pot reaction of imidazole‐TsDPEN‐N‐Boc with 3‐(trimethoxysilyl)propyl bromide in the SBA‐15 mesopores.After coordination to Rh,the chiral solid catalysts could efficiently catalyze quinoline transfer hydrogenation,achieving 97%conversion with 93%ee,which was comparable to their homogeneous counterparts.The chiral solid catalyst with the IL linkage afforded much higher turnover frequency than that without the IL linkage(93 h^(–1)vs.33 h^(–1)),attributed to the phase transfer and formate‐enriching ability of the IL linkage.Furthermore,the effect of the pH on the reaction rate of the solid catalyst was investigated,preventing reaction rate retardation during the catalytic process.The tuning of the linkage group is an efficient approach for catalytic activity improvement of immobilized chiral catalysts.展开更多
Three ruthenium(II)complex catalysts bearing2,6‐bis(tetrazolyl)pyridine were synthesized,structurally characterized,and applied in the transfer hydrogenation of ketones.Their different catalytic activities were attri...Three ruthenium(II)complex catalysts bearing2,6‐bis(tetrazolyl)pyridine were synthesized,structurally characterized,and applied in the transfer hydrogenation of ketones.Their different catalytic activities were attributed to the different phosphine ligands on the4‐chloro‐2,6‐bis(1‐(p‐tolyl)‐1Htetrazol‐5‐yl)pyridine ruthenium(II)complexes,with that based on1,4‐bis(diphenylphosphino)butane exhibiting better catalytic activity.A variety of ketones were reduced to their corresponding alcohols with>95%conversion.展开更多
A new C-2-symmetric diamine/diphosphine Ruthenium (II) complex, RuCl2P2N2H4, was used as an excellent catalyst to carry out the catalytic hydrogen transfer reduction of acetophenone. The conversion of acetophenone to ...A new C-2-symmetric diamine/diphosphine Ruthenium (II) complex, RuCl2P2N2H4, was used as an excellent catalyst to carry out the catalytic hydrogen transfer reduction of acetophenone. The conversion of acetophenone to 2-phenylethanol was up to 99% under the following reaction conditions: substrate:Ru:(CH3)(2)CHOK = 200:1:12; reaction temperature of 65 degrees C; reaction time of 2 h; normal pressure. A hydride transfer mechanism was also discussed.展开更多
Two new chiral Ru(Ⅱ)-sulfonamide complex have been used to catalyze the enantioselective transfer hydrogenation of prochiral ketones and the secondary alcohols are obtained with good to excellent optical yields.
A highly efficient and reusable plane‐curved and interlayer‐expanded MoS2nanocatalyst with increased exposure of active sites was prepared.The catalyst was used for the heterogeneous hydrogen transfer reaction of ni...A highly efficient and reusable plane‐curved and interlayer‐expanded MoS2nanocatalyst with increased exposure of active sites was prepared.The catalyst was used for the heterogeneous hydrogen transfer reaction of nitroarenes with hydrazine monohydrate as a reductant under mild reaction conditions without pressure and base,which was different from other hydrogen transfer systems that require the presence of a base(e.g.,propan‐2‐ol/KOH).The sandwiching of carbon between the MoS2nanosheets increased the distance between the layers of MoS2and exposed more Mo sites,resulting in superior catalytic performance compared with that of bulk MoS2catalyst.The active hydrogen(H*)generated from N2H4could directly transfer to the–NO2groups of nitrobenzene to form aniline followed by N2emission,which was confirmed by detecting the gas emission with mass spectrometry during the decomposition of hydrazine or the co‐existence of nitrobenzene and hydrazine.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to conv...Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task.Herein,we report the synthesis of carbon coated LaFe_(0.92)Pd_(0.08)O_(3) composites(LFPO-8@C)for CTH of benzaldehyde(BzH)into benzyl alcohol(BzOH),using isopropanol(IPA)as hydrogen source.The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites,and the doping of Pd2+at Fe3+site strengthens the ability of LaFeO_(3) to convert BzH into BzOH.A balanced point between them(i.e.,abilities to adsorb BzH and to convert BzH into BzOH)is obtained at LFPO-8@C,which exhibits a BzOH formation rate of 3.88 mmol·gcat^(-1)·h^(-1) at 180℃ for 3 h,which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO_(3)@C.A reaction mechanism is proposed,in which the acidic sites(e.g.,Fe^(4+),oxygen vacancy)are used for the activation of C=O bond of BzH and O-H bond of IPA,and the basic sites(e.g.,lattice oxygen)for the activation ofα-H(O-H)bond of IPA.展开更多
Transition metal-catalyzed asymmetric transfer hydrogenation has been proven to be a powerful approach for the synthesis of chiral alcohols.Herein,a highly efficient and enantioselective transfer hydrogenation of dibe...Transition metal-catalyzed asymmetric transfer hydrogenation has been proven to be a powerful approach for the synthesis of chiral alcohols.Herein,a highly efficient and enantioselective transfer hydrogenation of dibenzoheptaheterocyclic ketones catalyzed by an arene-tethered TsDPEN-based Rh(ll)catalyst has been successfully developed,and a variety of dibenzoheptaheterocyclic ketones were reduced by a 1/1 mixture of formic acid and DBU(1,8-diazabicyclo[5.4.0]undec-7-ene)with high yields and enantioselectivities.With this method,the asymmetric reduction of 7,8-difluorodibenzo[b,e]thiepin-11(6H)-one has been realized,providing the key intermediate of baloxavir marboxil with>99% yield and>99% ee at a substrate/catalyst molar ratio of 1000.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.51372248, No.51432009 and No.51502297), Instrument Developing Project of the Chinese Academy of Sciences (No.yz201421), the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China.
文摘A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.
基金supported by the National Natural Science Foundation of China(21573031 and 21428301)the Fundamental Research Funds for the Central Universities(DUT15ZD106)
文摘Spinel ferrites NiFeOsupported Ru catalysts have been prepared via a simple sol–gel route and applied for converting biomass-derived furfural to 2-methylfuran. The as-prepared catalysts were characterized by thermogravimetric analysis(TG), Nadsorption–desorption, X-ray diffraction(XRD), scanning electronic microscopy(SEM), and X-ray photoelectron spectroscopy(XPS). Results showed that the catalysts had well-dispersed Ru active sites and large surface area for calcination temperature ranging from 300 to 500 ℃. The conversion of biomass-derived furfural into 2-methylfuran was conducted over Ru/NiFeOthrough catalytic transfer hydrogenation in liquid-phase with 2-propanol as the hydrogen source. A significantly enhanced activity and increased 2-methylfuran yield have been achieved in this study. Under mild conditions(180 ℃ and 2.1 MPa N), the conversion of furfural exceeds 97% and 2-methylfuran yield was up to 83% over the catalyst containing 8 wt% Ru. After five repeated uses, the catalytic activity and the corresponding product yield remained almost unchanged. The excellent catalytic activity and recycling performance provide a broad prospects for various practical applications.
文摘A room-temperature electrochemical strategy for hydrogenation(deuteration)and reverse dehydrogenation of N-heterocycles over a bifunctional MoNi_(4)electrode is developed,which includes the hydrogenation of quinoxaline using H2O as the hydrogen source with 80%Faradaic efficiency and the reverse dehydrogenation of hydrogen-rich 1,2,3,4-tetrahydroquinoxaline with up to 99%yield and selectivity.The in situ generated active hydrogen atom(H^(*))is plausibly involved in the hydrogenation of quinoxaline,where a consecutive hydrogen radical coupled electron transfer pathway is proposed.Notably,the MoNi_(4)alloy exhibits efficient quinoxaline hydrogenation at an overpotential of only 50 mV,owing to its superior water dissociation ability to provide H^(*)in alkaline media.In situ Raman tests indicate that the Ni^(Ⅱ)/Ni^(Ⅲ)redox couple can promote the dehydrogenation process,representing a promising anodic alternative to low-value oxygen evolution.Impressively,electrocatalytic deuteration is easily achieved with up to 99%deuteration ratios using D2O.This method is capable of producing a series of functionalized hydrogenated and deuterated quinoxalines.
基金Supported by the National Natural Science Foundation of China(Nos.2042300220703034)+1 种基金the Natural Science Foundation of Fujian Province of China(No.2008J0235)the Natural Science Foundation of Guangxi Province of China(No. 0991016)
文摘The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-o-tolylphosphino)-benzyl]cyclohexane-1,2-diamine(2) were employed for asymmetric transfer hydrogenation of aromatic ketones, giving the corresponding optically active alcohols with high activities(up to 99% conversion) and excellent enantioselectivities(up to 96% e.e.) under mild conditions. The chiral ruthenium(Ⅱ) complex (R,R)-3 has been prepared and characterized by NMR and X-ray crystallography.
基金supported by the Ministry of Science and Technology of the People’s Republic of China, China (2018YFE0118100)the National Natural Science Foundation of China, China (21905275, 22025206, 21721004, 21991090)+5 种基金the Liaoning Revitalization Talents Program, China (XLYC2002012)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy, China (Grant. YLU-DNL Fund 2021019)the CAS-NSTDA Joint Research Project, China (GJHZ2075)Dalian Institute of Chemical Physics, CAS, China (Grant: DICP I202131)the Science and Technology Commission of Shanghai Municipality, China (19DZ2271100)support of the Liaoning Key Laboratory of Biomass Conversion for Energy and Material。
文摘Photocatalytic hydrogenation of furfural offers an ideal method for selective biomass upgrading into value-added chemicals or fuel additives under mild conditions. However, it is still challenging to control the product selectivity due to side reactions of functional groups and reactive radical intermediates.Herein, photocatalytic transfer hydrogenation of furfural was studied using the TiO_(2)-based photocatalysts with alcohols as both the solvent and hydrogen donor. Ultralow loading metal supported on TiO_(2),together with adding a small amount of water in the system, were demonstrated to greatly increase the selectivity of furfuryl alcohol product. Electron paramagnetic resonance(EPR), ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) measurements gave evidence that ultralow loading Pt or Pd on TiO_(2)increase the oxygen vacancy concentration and the photogenerated charge separation efficiency, which accelerates the photocatalytic reduction of furfural. In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and mechanistic studies confirmed that photogenerated holes and electrons are active species, with dissociatively adsorbed methanol being directly oxidized by holes,furfural hydrogenated by protons and electrons and H_(2)O modifying the intermediate diffusion which contributes to high selectivity of furfuryl alcohol. This work demonstrates a simple approach to design photocatalysts and tune product selectivity in biomass valorization.
基金Project(21576074)supported by the National Natural Science Foundation of China
文摘Rubidium phosphate can be more conveniently obtained by extracting trace Rb+ from the salt lake brine. Rb_3PO_4 was found to be an excellent heterogeneous catalyst for transfer hydrogenation. Rb_3PO_4 lost 70% of its active sites after adsorbing water, but the remaining was not affected. The reductions of aldehydes and ketones, when promoted by Rb_3PO_4, were allowed at room temperature. The activities of substrates at room temperature followed a descending order of 2,6-dichlorobenzaldehyde> 4-bromobenzaldehyde>benzaldehyde>acetophenone>anisaldehyde>butanone. A new catalytic cycle postulating a six-membered cyclic transition state for the reductions of aldehydes and ketones was proposed. These results exploited the catalytic usage of Rb_3PO_4 and worth in industrial application.
基金supported by the National Natural Science Foundation of China(21422308,21403216,21273231)Dalian Excellent Youth Foundation(2014J11JH126)~~
文摘We present an efficient approach for the chemoselective synthesis of arylamines from nitroarenes and formate over an oxygen-implanted MoS2 catalyst(O-MoS2).O-MoS2 was prepared by incomplete sul idation and reduction of an ammonium molybdate precursor.A number of Mo-O bonds were implanted in the as-synthesized ultrathin O-MoS2 nanosheets.As a consequence of the different coordination geometries of O(Mo O2) and S(MoS2),and lengths of the Mo-O and Mo-S bonds,the implanted Mo-O bonds induced obvious defects and more coordinatively unsaturated(CUS) Mo sites in O-MoS2,as confirmed by X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,high resolution transmission electron microscopy,and extended X-ray absorption fine structure characterization of various MoS2-based materials.O-MoS2 with abundant CUS Mo sites was found to efficiently catalyze the chemoselective reduction of nitroarenes to arylamines.
基金the Higher Committee for Education Development in Iraq for financial support(AHB)the Commonwealth Scholarships Commission in the UK for a Split-Site PhD Scholarship(RB)
文摘Methanol is a safe, economic and easy-to-handle hydrogen source. It has rarely been used in transfer hydrogenation reactions, however. We herein report that a cyclometalated rhodium complex, rhodacycle, catalyzes highly chemoselective hydrogenation of α,β-unsaturated ketones with methanol as the hydrogen source. A wide variety of chalcones, styryl methyl ketones and vinyl methyl ketones, including sterically demanding ones, were reduced to the saturated ketones in refluxing methanol in a short reaction time, with no need for inter gas protection, and no reduction of the carbonyl moieties was observed. The catalysis described provides a practically easy and operationally safe method for the reduction of olefinic bonds in α,β-unsaturated ketone compounds.
基金supported by the National Natural Science Foundation of China(Grant No.21776161)。
文摘The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was controllable by adjusting the ratio of two metal precursors,copper formate(Cuf)and nickel acetate tetrahydrate(Ni(OAc)_(2)·4H_(2)O).Ni/Cu NPs were further anchored on graphene oxide(GO)to prepare a magnetic composite catalyst,called Ni/Cu-GO.The dispersibility of Ni/Cu NPs in solution was enhanced by GO anchoring to prevent the sintering and aggregation during the reaction process,thereby ensuring the catalytic and cycling performance of the catalyst.The catalytic transfer hydrogenation(CTH)reaction of nitroaromatics was investigated when ammonia borane was used as the hydrogen source.Cu dominated the main catalytic role in the reaction,while Ni played a synergistic role of catalysis and providing magnetic properties for separation.The Ni_(7)/Cu_(3)-GO catalyst exhibited the best catalytic performance with the conversion and yield of 99%and 96%,respectively,when 2-methyl-5-nitrophenol was used as the substrate.The Ni_(7)/Cu_(3)-GO catalyst also exhibited excellent cyclic catalytic performance with the 5-amino-2-methylphenol yield of above 90%after six cycles.In addition,the Ni_(7)/Cu_(3)-GO catalyst could be quickly recycled by magnetic separation.Moreover,the Ni_(7)/Cu_(3)-GO catalyst showed good catalytic performance for halogen-containing nitroaromatics without dehalogenation.
基金Supported by the National Natural Science Foundation of China(20576052) the Joint Innovation Fund of Jiangsu Province(BY2009107) the National Basic Research Program of China(2003CB615707)
文摘Three stable 4-substituted pyridine-based ruthenium(II)complexes[RuCl2(PPh3)L](L=4-R-2,6-bis (diethylaminomethylene)pyridine,R=Br,H or allyloxy)were synthesized.The catalytic activities of the complexes toward transfer hydrogenation from alcohols to ketones were investigated.The electronic effects of the para-substituent in the pyridyl ring were probed and we found that the electron-donating group increased the catalytic activity.The result suggests that an electron-donating group is probably preferential for linking the catalytic ruthenium complex and the chemically inert supporting molecules such as a carbosilane dendrimer.
基金We thank the National Natural Science Foundation of China (No. 20472061);Guangzhou Bureau of Science and Technology for financial support of this study.
文摘Antidepressant duloxetine (1) was prepared via asymmetric transfer hydrogenation of 3-(dimethylamino)-1-(thiophen-2- yl)propan-1-one (3). The Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes of several chiral ligands were examined as the catalyst and (S,S)-N-tosyl-1,2-diphenyl ethylenediamine (TsDPEN)-Ru(Ⅱ) complex was found to provide good yield and excellent enantioselectivity. 2007 Ming Yan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘Developing chiral solid catalysts for asymmetric catalysis is desirable for the elimination of homogeneous catalysis flaws but remains an immense challenge.Herein,we report the immobilization of TsDPEN on SBA‐15 with an ionic liquid(IL)linkage via the one‐pot reaction of imidazole‐TsDPEN‐N‐Boc with 3‐(trimethoxysilyl)propyl bromide in the SBA‐15 mesopores.After coordination to Rh,the chiral solid catalysts could efficiently catalyze quinoline transfer hydrogenation,achieving 97%conversion with 93%ee,which was comparable to their homogeneous counterparts.The chiral solid catalyst with the IL linkage afforded much higher turnover frequency than that without the IL linkage(93 h^(–1)vs.33 h^(–1)),attributed to the phase transfer and formate‐enriching ability of the IL linkage.Furthermore,the effect of the pH on the reaction rate of the solid catalyst was investigated,preventing reaction rate retardation during the catalytic process.The tuning of the linkage group is an efficient approach for catalytic activity improvement of immobilized chiral catalysts.
文摘Three ruthenium(II)complex catalysts bearing2,6‐bis(tetrazolyl)pyridine were synthesized,structurally characterized,and applied in the transfer hydrogenation of ketones.Their different catalytic activities were attributed to the different phosphine ligands on the4‐chloro‐2,6‐bis(1‐(p‐tolyl)‐1Htetrazol‐5‐yl)pyridine ruthenium(II)complexes,with that based on1,4‐bis(diphenylphosphino)butane exhibiting better catalytic activity.A variety of ketones were reduced to their corresponding alcohols with>95%conversion.
文摘A new C-2-symmetric diamine/diphosphine Ruthenium (II) complex, RuCl2P2N2H4, was used as an excellent catalyst to carry out the catalytic hydrogen transfer reduction of acetophenone. The conversion of acetophenone to 2-phenylethanol was up to 99% under the following reaction conditions: substrate:Ru:(CH3)(2)CHOK = 200:1:12; reaction temperature of 65 degrees C; reaction time of 2 h; normal pressure. A hydride transfer mechanism was also discussed.
基金This research was supported by Hong Kong Polytech University.
文摘Two new chiral Ru(Ⅱ)-sulfonamide complex have been used to catalyze the enantioselective transfer hydrogenation of prochiral ketones and the secondary alcohols are obtained with good to excellent optical yields.
基金supported by the Ministry of Science and Technology(MOST,2016YFA0204100 and 2011CBA00504)the National Natural Science Foundation of China(21573254,91545110)+1 种基金the Youth Innovation Promotion Association(CAS)the Sinopec China~~
文摘A highly efficient and reusable plane‐curved and interlayer‐expanded MoS2nanocatalyst with increased exposure of active sites was prepared.The catalyst was used for the heterogeneous hydrogen transfer reaction of nitroarenes with hydrazine monohydrate as a reductant under mild reaction conditions without pressure and base,which was different from other hydrogen transfer systems that require the presence of a base(e.g.,propan‐2‐ol/KOH).The sandwiching of carbon between the MoS2nanosheets increased the distance between the layers of MoS2and exposed more Mo sites,resulting in superior catalytic performance compared with that of bulk MoS2catalyst.The active hydrogen(H*)generated from N2H4could directly transfer to the–NO2groups of nitrobenzene to form aniline followed by N2emission,which was confirmed by detecting the gas emission with mass spectrometry during the decomposition of hydrazine or the co‐existence of nitrobenzene and hydrazine.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金support provided by the National Natural Science Foundation of China(Nos.42277485,21976141,22102123)the Department of Science and Technology of Hubei Province(No.2021CFA034)+3 种基金the Department of Education of Hubei Province(Nos.T2020011,Q20211712)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Nos.STRZ202202,STRZ202101)is gratefully acknowledged.S.A.C.C.acknowledges Fundação para a Ciência e a Tecnologia(FCT)Portuqal for Scientific Employment Stimulus-Institutional Call(CEEC-INST/00102/2018)and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES(UIDB/50006/2020,UIDP/5006/2020).
文摘Catalytic transfer hydrogenation(CTH)is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones.However,managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task.Herein,we report the synthesis of carbon coated LaFe_(0.92)Pd_(0.08)O_(3) composites(LFPO-8@C)for CTH of benzaldehyde(BzH)into benzyl alcohol(BzOH),using isopropanol(IPA)as hydrogen source.The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites,and the doping of Pd2+at Fe3+site strengthens the ability of LaFeO_(3) to convert BzH into BzOH.A balanced point between them(i.e.,abilities to adsorb BzH and to convert BzH into BzOH)is obtained at LFPO-8@C,which exhibits a BzOH formation rate of 3.88 mmol·gcat^(-1)·h^(-1) at 180℃ for 3 h,which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO_(3)@C.A reaction mechanism is proposed,in which the acidic sites(e.g.,Fe^(4+),oxygen vacancy)are used for the activation of C=O bond of BzH and O-H bond of IPA,and the basic sites(e.g.,lattice oxygen)for the activation ofα-H(O-H)bond of IPA.
基金the Southern University of Science and Technology(start-up fund),Shenzhen Science and Technology Innovation Committee(No.KQTD20150717103157174)Stable Support Plan Program of Shenzhen Natural Science Fund(Program Contract No.20200925161222002)+4 种基金Key-Area Research and DevelopmentPt rogramofGuangdong Province((No.2020B010188001)Innovative Team of Universities in Guangdong Province(No.2020KCXTD016)National Natural Science Foundation of China(No.21991113)the National Natural Science Foundation of China(No.22171129)Shenzhen Science and Technology Innovation Committee(JCYJ20210324104202007)for financial support.
文摘Transition metal-catalyzed asymmetric transfer hydrogenation has been proven to be a powerful approach for the synthesis of chiral alcohols.Herein,a highly efficient and enantioselective transfer hydrogenation of dibenzoheptaheterocyclic ketones catalyzed by an arene-tethered TsDPEN-based Rh(ll)catalyst has been successfully developed,and a variety of dibenzoheptaheterocyclic ketones were reduced by a 1/1 mixture of formic acid and DBU(1,8-diazabicyclo[5.4.0]undec-7-ene)with high yields and enantioselectivities.With this method,the asymmetric reduction of 7,8-difluorodibenzo[b,e]thiepin-11(6H)-one has been realized,providing the key intermediate of baloxavir marboxil with>99% yield and>99% ee at a substrate/catalyst molar ratio of 1000.