A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding wh...A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision.展开更多
The indirect method for the continuous low-thrust near minimum cumulative longitude orbit transfer problem is addressed.The movement of the satellite is described by the Gauss equation using the modified equinoctial e...The indirect method for the continuous low-thrust near minimum cumulative longitude orbit transfer problem is addressed.The movement of the satellite is described by the Gauss equation using the modified equinoctial elements and replacing time as the system independent variable by the cumulative longitude.The maximum principle is adapted to design the optimal control in order to minimize the final cumulative longitude, and the twopoint-boundary-value problem is derived from the orbit transfer problem.The single shooting method is applied in a numerical experiment, and the simulations demonstrate that the orbit transfer mission is fulfilled and the product of the maximal thrust and the minimum cumulative longitude is near constant.展开更多
The problem of optimal aeroassisted symmetric transfer between elliptical orbits is concerned.The complete trajectory is assumed as consisting of two impulsive velocity changes at the beginning and the end of an inter...The problem of optimal aeroassisted symmetric transfer between elliptical orbits is concerned.The complete trajectory is assumed as consisting of two impulsive velocity changes at the beginning and the end of an interior atmospheric subarc,where the vehicle is controlled via the lift coefficient and thrust.The corresponding dynamic equations are built and bounded controls are considered.For the purpose of optimization computation,the equations are normalized.In order to minimize the total fuel consumption,the geocentric radius of initial elliptical transfer orbital perigee and controls during atmospheric flight should all be optimized.It is an optimal control problem which involves additional parameter optimization.To solve the problem,a two-level optimization method denoted by "genetic algorithm + Gauss pseudospectral method" is adopted:the genetic algorithm is used for parameter optimization and the Gauss pseudospectral method is used for optimal control problems.The flow chart of simulation is given.On this basis,the issue of more realistic modeling with two finite-thrust subarcs in the nonatmospheric part of the trajectory is simultaneously addressed.The orbital transfer problem is transformed to three continuous optimal control problems,and the constraints at different times are given,which are respectively solved by using the Gauss pseudospectral method.The obtained numerical results indicate that the optimal thrust control is of bangbang type.The minimum-fuel trajectory in the atmosphere consists of aeroglide,aerocruise and aeroglide.They are compared with the results of pure impulsive model,and the conclusions that a significant fuel saving will be achieved by synergetic maneuver are drawn.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
Oxygenations are highly exergonic, yet combustion of organic matter is not spontaneous in an atmosphere that is 21% O<sub>2</sub>. Electrons are fermions with a quantum spin number<em> s</em> o...Oxygenations are highly exergonic, yet combustion of organic matter is not spontaneous in an atmosphere that is 21% O<sub>2</sub>. Electrons are fermions with a quantum spin number<em> s</em> of 1/2<span style="white-space:nowrap;"><em><span style="white-space:nowrap;">ħ</span></em></span>. An orbital containing a single electron with <em>s</em> = 1/2 is fermionic. Orbitals can contain a maximum of two electrons with antiparallel spins,<em> i.e.</em>, spin magnetic quantum numbers <em>m</em><sub><em>s</em></sub> of 1/2 and -1/2. An orbital filled by an electron couple has <em>s</em> = 0 and bosonic character. The multiplicity of a reactant is defined as |2(<em>S</em>)| + 1 where <em>S</em> is the total spin quantum number. The Wigner spin conservation rules state that multiplicity is conserved. The transmission coefficient <em>κ</em> of absolute reaction rate theory also indicates the necessity for spin conservation. Burning is fermionic combustion that occurs when sufficient energy is applied to a bosonic molecule to cause homolytic bond cleavage yielding fermionic products capable of reaction with the bifermionic frontier orbitals of triplet multiplicity O<sub>2</sub>. Neutrophil leucocytes kill microorganisms by bosonic combustion and employ two mechanisms for changing the multiplicity of O<sub>2</sub> from triplet to singlet. Microorganisms, composed of bosonic singlet multiplicity molecules, do not directly react with bifermionic O<sub>2</sub>, but are highly susceptible to electrophilic attack by bosonic electronically excited singlet molecular oxygen (<span style="white-space:nowrap;"><sup>1</sup>O<sub>2</sub><sup style="margin-left:-10px;">*</sup></span><span style="font-size:10px;white-space:nowrap;">).</span> Hydride ion (H<sup>-</sup>) transfer is the common mode of cytoplasmic redox metabolism. Bosonic transfer of an orbital electron couple protects from damage by obviating fermionic reaction with bifermionic O<sub>2</sub>. Bosonic coupled electron transfer raises the consideration that quantum tunneling might be involved in facilitating such redox transfer.展开更多
Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by ...Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.展开更多
The optimizing total velocity increment Δv needed for orbital maneuver between two elliptic orbits with plane change is investigated. Two-impulse orbital transfer is used based on a changing of transfer velo...The optimizing total velocity increment Δv needed for orbital maneuver between two elliptic orbits with plane change is investigated. Two-impulse orbital transfer is used based on a changing of transfer velocities concept due to the changing in the energy. The transferring has been made between two elliptic orbits having a common centre of attraction with changing in their planes in standard Hohmann transfer with the terminal orbit which is elliptic orbit and not circular. We develop a treatment based on the elements of elliptic orbits a1,e1, a2,e2, and?aT,eT of the initial orbit, final orbit and transferred orbit respectively. The first impulse Δv1 at the perigee induces a rotation of the orbital plane by ?which will be minimized. The second impulse Δv2 at apogee is induced an angle ?to product the final elliptic orbit. The total plane change required . We calculate the total impulse Δv and minimize by optimizing angle of plane’s variation . We obtain a polynomial equation of six degrees on the two transfer angles between neither two elliptic orbits ?and . The solution obtained numerically, using programming code of MATHEMATICA V10, with no condition on the eccentricity or the semi-major axis of the initial, transformed, and the final orbits. We find that there are constrains on the transfer angles and α. For αit must be between 40°and 160°, and there is no solution if αis less than 40°and bigger than 160°and ?takes the values less than 40°. The minimum total velocity increments obtained at the value of ?less than 25°and& alpha;equal to 160°. This is an interesting result in orbital transfer problem in which the change of orbital plane is necessary for the transferring.展开更多
This paper proposes an optimal,robust,and efficient guidance scheme for the perturbed minimum-time low-thrust transfer toward the geostationary orbit.The Earth’s oblateness perturbation and shadow are taken into acco...This paper proposes an optimal,robust,and efficient guidance scheme for the perturbed minimum-time low-thrust transfer toward the geostationary orbit.The Earth’s oblateness perturbation and shadow are taken into account.It is difficult for a Lyapunov-based or trajectory-tracking guidance method to possess multiple characteristics at the same time,including high guidance optimality,robustness,and onboard computational efficiency.In this work,a concise relationship between the minimum-time transfer problem with orbital averaging and its optimal solution is identified,which reveals that the five averaged initial costates that dominate the optimal thrust direction can be approximately determined by only four initial modified equinoctial orbit elements after a coordinate transformation.Based on this relationship,the optimal averaged trajectories constituting the training dataset are randomly generated around a nominal averaged trajectory.Five polynomial regression models are trained on the training dataset and are regarded as the costate estimators.In the transfer,the spacecraft can obtain the real-time approximate optimal thrust direction by combining the costate estimations provided by the estimators with the current state at any time.Moreover,all these computations onboard are analytical.The simulation results show that the proposed guidance scheme possesses extremely high guidance optimality,robustness,and onboard computational efficiency.展开更多
联合甚长基线干涉测量(very long baseline interferometry,VLBI)时延数据与转发式(orbit determination by transfer tracking,ODTT)测距数据能够有效提高地球静止轨道(geostationary earth orbit,GEO)卫星定轨精度。参照位置精度衰减...联合甚长基线干涉测量(very long baseline interferometry,VLBI)时延数据与转发式(orbit determination by transfer tracking,ODTT)测距数据能够有效提高地球静止轨道(geostationary earth orbit,GEO)卫星定轨精度。参照位置精度衰减因子(position dilution of precision,PDOP)的改变,研究不同VLBI基线时延数据与转发式测距数据的联合对GEO卫星定轨精度的改善,可为特定条件下联合观测时VLBI基线的最优选择提供参考。基于中国科学院国家授时中心宽带VLBI系统和转发式测轨系统的实测数据,开展中星12号GEO卫星的定轨试验。试验结果表明定轨精度的提高与PDOP的降低成正相关。相比于转发式单独定轨,联合VLBI系统中的喀什—三亚基线,PDOP降低了3.00,定轨精度提高了11.48%;联合VLBI系统中的吉林—喀什基线,PDOP降低了3.38,定轨精度提高了14.73%;联合VLBI系统中的吉林—三亚基线,PDOP降低了6.90,定轨精度提高了19.75%;联合VLBI系统中的吉林—三亚和吉林—喀什两条基线,PDOP降低了9.94,定轨精度提高了27.23%。展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, ...An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.展开更多
基金Supported by the Key Project of Natural Science Foundation of Jiangsu Province(BK2010072)~~
文摘A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision.
基金supported by the National Natural Science Foundation of China (10832006 60874011)
文摘The indirect method for the continuous low-thrust near minimum cumulative longitude orbit transfer problem is addressed.The movement of the satellite is described by the Gauss equation using the modified equinoctial elements and replacing time as the system independent variable by the cumulative longitude.The maximum principle is adapted to design the optimal control in order to minimize the final cumulative longitude, and the twopoint-boundary-value problem is derived from the orbit transfer problem.The single shooting method is applied in a numerical experiment, and the simulations demonstrate that the orbit transfer mission is fulfilled and the product of the maximal thrust and the minimum cumulative longitude is near constant.
基金supported by the National High Technology Research and Development Program of China(863Program)(2011AA0469)
文摘The problem of optimal aeroassisted symmetric transfer between elliptical orbits is concerned.The complete trajectory is assumed as consisting of two impulsive velocity changes at the beginning and the end of an interior atmospheric subarc,where the vehicle is controlled via the lift coefficient and thrust.The corresponding dynamic equations are built and bounded controls are considered.For the purpose of optimization computation,the equations are normalized.In order to minimize the total fuel consumption,the geocentric radius of initial elliptical transfer orbital perigee and controls during atmospheric flight should all be optimized.It is an optimal control problem which involves additional parameter optimization.To solve the problem,a two-level optimization method denoted by "genetic algorithm + Gauss pseudospectral method" is adopted:the genetic algorithm is used for parameter optimization and the Gauss pseudospectral method is used for optimal control problems.The flow chart of simulation is given.On this basis,the issue of more realistic modeling with two finite-thrust subarcs in the nonatmospheric part of the trajectory is simultaneously addressed.The orbital transfer problem is transformed to three continuous optimal control problems,and the constraints at different times are given,which are respectively solved by using the Gauss pseudospectral method.The obtained numerical results indicate that the optimal thrust control is of bangbang type.The minimum-fuel trajectory in the atmosphere consists of aeroglide,aerocruise and aeroglide.They are compared with the results of pure impulsive model,and the conclusions that a significant fuel saving will be achieved by synergetic maneuver are drawn.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
文摘Oxygenations are highly exergonic, yet combustion of organic matter is not spontaneous in an atmosphere that is 21% O<sub>2</sub>. Electrons are fermions with a quantum spin number<em> s</em> of 1/2<span style="white-space:nowrap;"><em><span style="white-space:nowrap;">ħ</span></em></span>. An orbital containing a single electron with <em>s</em> = 1/2 is fermionic. Orbitals can contain a maximum of two electrons with antiparallel spins,<em> i.e.</em>, spin magnetic quantum numbers <em>m</em><sub><em>s</em></sub> of 1/2 and -1/2. An orbital filled by an electron couple has <em>s</em> = 0 and bosonic character. The multiplicity of a reactant is defined as |2(<em>S</em>)| + 1 where <em>S</em> is the total spin quantum number. The Wigner spin conservation rules state that multiplicity is conserved. The transmission coefficient <em>κ</em> of absolute reaction rate theory also indicates the necessity for spin conservation. Burning is fermionic combustion that occurs when sufficient energy is applied to a bosonic molecule to cause homolytic bond cleavage yielding fermionic products capable of reaction with the bifermionic frontier orbitals of triplet multiplicity O<sub>2</sub>. Neutrophil leucocytes kill microorganisms by bosonic combustion and employ two mechanisms for changing the multiplicity of O<sub>2</sub> from triplet to singlet. Microorganisms, composed of bosonic singlet multiplicity molecules, do not directly react with bifermionic O<sub>2</sub>, but are highly susceptible to electrophilic attack by bosonic electronically excited singlet molecular oxygen (<span style="white-space:nowrap;"><sup>1</sup>O<sub>2</sub><sup style="margin-left:-10px;">*</sup></span><span style="font-size:10px;white-space:nowrap;">).</span> Hydride ion (H<sup>-</sup>) transfer is the common mode of cytoplasmic redox metabolism. Bosonic transfer of an orbital electron couple protects from damage by obviating fermionic reaction with bifermionic O<sub>2</sub>. Bosonic coupled electron transfer raises the consideration that quantum tunneling might be involved in facilitating such redox transfer.
基金supported by the National Basic Research Programof China(973 Program)(2012CB720000)the National Natural Science Foundation of China(11102020)+1 种基金Program for New Century Excellent Talents in UniversityBeijing Higher Education Young Elite Teacher Project and China Scholarship Council
文摘Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.
文摘The optimizing total velocity increment Δv needed for orbital maneuver between two elliptic orbits with plane change is investigated. Two-impulse orbital transfer is used based on a changing of transfer velocities concept due to the changing in the energy. The transferring has been made between two elliptic orbits having a common centre of attraction with changing in their planes in standard Hohmann transfer with the terminal orbit which is elliptic orbit and not circular. We develop a treatment based on the elements of elliptic orbits a1,e1, a2,e2, and?aT,eT of the initial orbit, final orbit and transferred orbit respectively. The first impulse Δv1 at the perigee induces a rotation of the orbital plane by ?which will be minimized. The second impulse Δv2 at apogee is induced an angle ?to product the final elliptic orbit. The total plane change required . We calculate the total impulse Δv and minimize by optimizing angle of plane’s variation . We obtain a polynomial equation of six degrees on the two transfer angles between neither two elliptic orbits ?and . The solution obtained numerically, using programming code of MATHEMATICA V10, with no condition on the eccentricity or the semi-major axis of the initial, transformed, and the final orbits. We find that there are constrains on the transfer angles and α. For αit must be between 40°and 160°, and there is no solution if αis less than 40°and bigger than 160°and ?takes the values less than 40°. The minimum total velocity increments obtained at the value of ?less than 25°and& alpha;equal to 160°. This is an interesting result in orbital transfer problem in which the change of orbital plane is necessary for the transferring.
基金supported by the National Natural Science Foundation of China(No.12022214)the National Key R&D Program of China(No.2020YFC2201200)。
文摘This paper proposes an optimal,robust,and efficient guidance scheme for the perturbed minimum-time low-thrust transfer toward the geostationary orbit.The Earth’s oblateness perturbation and shadow are taken into account.It is difficult for a Lyapunov-based or trajectory-tracking guidance method to possess multiple characteristics at the same time,including high guidance optimality,robustness,and onboard computational efficiency.In this work,a concise relationship between the minimum-time transfer problem with orbital averaging and its optimal solution is identified,which reveals that the five averaged initial costates that dominate the optimal thrust direction can be approximately determined by only four initial modified equinoctial orbit elements after a coordinate transformation.Based on this relationship,the optimal averaged trajectories constituting the training dataset are randomly generated around a nominal averaged trajectory.Five polynomial regression models are trained on the training dataset and are regarded as the costate estimators.In the transfer,the spacecraft can obtain the real-time approximate optimal thrust direction by combining the costate estimations provided by the estimators with the current state at any time.Moreover,all these computations onboard are analytical.The simulation results show that the proposed guidance scheme possesses extremely high guidance optimality,robustness,and onboard computational efficiency.
文摘联合甚长基线干涉测量(very long baseline interferometry,VLBI)时延数据与转发式(orbit determination by transfer tracking,ODTT)测距数据能够有效提高地球静止轨道(geostationary earth orbit,GEO)卫星定轨精度。参照位置精度衰减因子(position dilution of precision,PDOP)的改变,研究不同VLBI基线时延数据与转发式测距数据的联合对GEO卫星定轨精度的改善,可为特定条件下联合观测时VLBI基线的最优选择提供参考。基于中国科学院国家授时中心宽带VLBI系统和转发式测轨系统的实测数据,开展中星12号GEO卫星的定轨试验。试验结果表明定轨精度的提高与PDOP的降低成正相关。相比于转发式单独定轨,联合VLBI系统中的喀什—三亚基线,PDOP降低了3.00,定轨精度提高了11.48%;联合VLBI系统中的吉林—喀什基线,PDOP降低了3.38,定轨精度提高了14.73%;联合VLBI系统中的吉林—三亚基线,PDOP降低了6.90,定轨精度提高了19.75%;联合VLBI系统中的吉林—三亚和吉林—喀什两条基线,PDOP降低了9.94,定轨精度提高了27.23%。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
文摘An impulse feedback control law to change the mean orbit elements of spacecraft around asteroid is presented. First, the mean orbit elements are transferred to the osculating orbit elements at the burning time. Then, the feedback control law based on Gauss’s perturbation equations of motion is given. And the impulse control for targeting from the higher circulation orbit to the specified periapsis is developed. Finally, the numerical simulation is performed and the simulation results show that the presented impulse control law is effective.