Objective: The aim of this case-control study was to explore whether five tagging single nucleotide poly- morphisms (tSNPs) within the transforming growth factor-ill (TGF-fll) gene were involved in manifestation ...Objective: The aim of this case-control study was to explore whether five tagging single nucleotide poly- morphisms (tSNPs) within the transforming growth factor-ill (TGF-fll) gene were involved in manifestation of inflammatory and fibrotic processes associated with coal workers pneumoconiosis (CWP). Methods: The study included 508 CWP patients and 526 controls who were underground coal miners from Xuzhou Mining Business Group. Five tSNPs were selected from the HapMap and detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The single SNP analysis showed that the genotype frequencies of SNP2 (rs1800470, +869T/C, extron 1) and SNP5 (rs11466345, intron 5) in CWP cases were significantly different from those in controls. Multivariate logistic regression analysis revealed that SNP2 (rs1800470) CC genotype was associated with decreased risk of CWP (OR = 0.50, 95% CI = 0.32-0.78), which was evident among subgroups of those never smoke (OR = 0.40, 95%CI = 0.24-0.66), cases with stage Ⅱ(OR = 0.41, 95%CI = 0.22-0.76) and exposure period (〈 28 y: OR = 0.54, 95%CI = 0.31-0.95; ≥ 28 y: OR = 0.52, 95%CI = 0.32-0.96). However, the SNP5 (rs11466345) GG genotype was associated with an increased risk of CWP (OR = 2.5, 95%CI = 1.36-4.57), and further stratification analysis showed that the risk of CWP was increased in both smoking and nonsmoking groups, shorter and longer exposure groups, while the risk of CWP was only increased in patients with stage I and Ⅱ. Conclusion: This study suggests that TGF-β1 polymorphisms may contribute to susceptibility of CWP.展开更多
Objective To investigate the effects of YOD1 overexpression on the proliferation and migration of human oral keratinocytes(HOKs), and to clarify whether the mechanisms involve transforming growth factor-β(TGF-β)...Objective To investigate the effects of YOD1 overexpression on the proliferation and migration of human oral keratinocytes(HOKs), and to clarify whether the mechanisms involve transforming growth factor-β(TGF-β) signaling. Methods HOKs were transfected with the plasmid p EGFP-N3-YOD1 containing YOD1. The mR NA levels of YOD1 and TGF-β were determined by q PCR. The protein expressions of YOD1, TGF-β, Smad2/3, Smad4, and phospho-Smad2/3 were determined by western blotting. Cell proliferation and migration were evaluated by Cell Counting Kit-8 assay and wound healing assay, respectively. Results The m RNA and protein levels of YOD1 were higher in HOKs transfected with YOD1. YOD1 overexpression significantly enhanced the migration of HOKs. The mR NA and protein levels of TGF-β3 were increased by YOD1 overexpression. HOKs transfected with YOD1 exhibited increased phospho-Smad2/3 levels. Conclusion YOD1 overexpression enhances cell migration by promoting TGF-β3 signaling which may play an important role in lip and palate formation. YOD1 mutation may contribute to aberrant TGF-β3 signaling associated with decreased cell migration resulting in NSCLP.展开更多
Background Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production and neuron protection. This study aimed to determine the neuron protective ef...Background Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production and neuron protection. This study aimed to determine the neuron protective effect of erythropoietin on experimental rats enduring spinal cord injury (SCI) by assessing thrombospondin-1 (TSP-1) level and transforming growth factor-β (TGF-β) in the development of a rat model of SCI. Methods Sixty Sprague-Dawley rats were randomly assigned to three groups: sham operation control group, SCI group and EPO treatment group. By using a weight-drop contusion SCI model, the rats in the SCI group and EPO treatment group were sacrificed at 24 hours and 7 days subsequently. The Basso, Beattie, and Bresnahan (BBB) scores were examined for locomotor function. Pathological changes were observed after HE staining. The expressions of thrombospondin-2 (TSP-1) and TGF-β were determined by immunohistochemical staining and Western blotting. Results Slighter locomotor dysfunction was discovered and it was recovered abruptly as higher BBB scores were found in the EPO treatment group than in the SCI group (P 〈0.01). Pathologically, progressive disruption of the dorsal white matter and regeneration of a few neurons were also observed in SCI rats. TSP-1 and TGF-β expression increased at 24 hours and 7 days after SCI in the injured segment, and it was higher in the SCI group than in the EPO treatment group. Spinal cord samples from the animals demonstrated a TSP-1 optical density of 112.2±6.8 and TSP-1 positive cells of 5.7±1.3 respectively. After injury, the TSP-1 optical density and cell number increased to 287.2±14.3/mm^2 and 23.2±2.6/mm^2 at 24 hours and to 232.1±13.2/mm^2 and 15.2±2.3/mm^2 at 7 days respectively. When EPO treated rats compared with the SCI rats, the TSP-1 optical density and cell number decreased to 213.1 ±11.6/mm^2 and 11.9±1.6/mm^2 at 24 hours and to 189.9±10.5/mm^2 and 9.3±1.5/mm^2 at 7 days, respectively (P 〈0.01). In the SCI rats, the TGF-β optical density and positive neuron number were 291.4±15.2/mm^2 and 28.8±4.9/mm^2 at 24 hours and 259.1±12.3/mm^2 and 23.9±4.1/mm^2 at 7 days respectively. They decreased in the EPO treated rats to 222.8±11.9/mm^2 and 13.7±2.1/mm^2 at 24 hours and to 196.5±9.7/mm^2 and 8.7±2.2/mm^2 at 7 days (P 〈0.01). Conclusions Increased expression of TSP-1 and TGF-β can be found in the injured segment of the spinal cord at 24 hours and 7 days after injury. EPO treatment can effectively prevent pathological alterations from severe spinal cord injury by reduced expression of TSP-1 and TGF-β.展开更多
α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironme...α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.展开更多
基金supported by the National Natural Science Foundation of China(No.30872093)Research Foundation of Health Department of Jiangsu Province(No.H200628)
文摘Objective: The aim of this case-control study was to explore whether five tagging single nucleotide poly- morphisms (tSNPs) within the transforming growth factor-ill (TGF-fll) gene were involved in manifestation of inflammatory and fibrotic processes associated with coal workers pneumoconiosis (CWP). Methods: The study included 508 CWP patients and 526 controls who were underground coal miners from Xuzhou Mining Business Group. Five tSNPs were selected from the HapMap and detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The single SNP analysis showed that the genotype frequencies of SNP2 (rs1800470, +869T/C, extron 1) and SNP5 (rs11466345, intron 5) in CWP cases were significantly different from those in controls. Multivariate logistic regression analysis revealed that SNP2 (rs1800470) CC genotype was associated with decreased risk of CWP (OR = 0.50, 95% CI = 0.32-0.78), which was evident among subgroups of those never smoke (OR = 0.40, 95%CI = 0.24-0.66), cases with stage Ⅱ(OR = 0.41, 95%CI = 0.22-0.76) and exposure period (〈 28 y: OR = 0.54, 95%CI = 0.31-0.95; ≥ 28 y: OR = 0.52, 95%CI = 0.32-0.96). However, the SNP5 (rs11466345) GG genotype was associated with an increased risk of CWP (OR = 2.5, 95%CI = 1.36-4.57), and further stratification analysis showed that the risk of CWP was increased in both smoking and nonsmoking groups, shorter and longer exposure groups, while the risk of CWP was only increased in patients with stage I and Ⅱ. Conclusion: This study suggests that TGF-β1 polymorphisms may contribute to susceptibility of CWP.
基金supported by National Natural Science Foundations of China[No.81273103]the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Objective To investigate the effects of YOD1 overexpression on the proliferation and migration of human oral keratinocytes(HOKs), and to clarify whether the mechanisms involve transforming growth factor-β(TGF-β) signaling. Methods HOKs were transfected with the plasmid p EGFP-N3-YOD1 containing YOD1. The mR NA levels of YOD1 and TGF-β were determined by q PCR. The protein expressions of YOD1, TGF-β, Smad2/3, Smad4, and phospho-Smad2/3 were determined by western blotting. Cell proliferation and migration were evaluated by Cell Counting Kit-8 assay and wound healing assay, respectively. Results The m RNA and protein levels of YOD1 were higher in HOKs transfected with YOD1. YOD1 overexpression significantly enhanced the migration of HOKs. The mR NA and protein levels of TGF-β3 were increased by YOD1 overexpression. HOKs transfected with YOD1 exhibited increased phospho-Smad2/3 levels. Conclusion YOD1 overexpression enhances cell migration by promoting TGF-β3 signaling which may play an important role in lip and palate formation. YOD1 mutation may contribute to aberrant TGF-β3 signaling associated with decreased cell migration resulting in NSCLP.
基金This study was supported by grants from the Major Science Research Program of Zhejiang Province (No. 2006C23029), Medical Science Foundation of Zhejiang Province (No. 2005HN007) and Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents.
文摘Background Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production and neuron protection. This study aimed to determine the neuron protective effect of erythropoietin on experimental rats enduring spinal cord injury (SCI) by assessing thrombospondin-1 (TSP-1) level and transforming growth factor-β (TGF-β) in the development of a rat model of SCI. Methods Sixty Sprague-Dawley rats were randomly assigned to three groups: sham operation control group, SCI group and EPO treatment group. By using a weight-drop contusion SCI model, the rats in the SCI group and EPO treatment group were sacrificed at 24 hours and 7 days subsequently. The Basso, Beattie, and Bresnahan (BBB) scores were examined for locomotor function. Pathological changes were observed after HE staining. The expressions of thrombospondin-2 (TSP-1) and TGF-β were determined by immunohistochemical staining and Western blotting. Results Slighter locomotor dysfunction was discovered and it was recovered abruptly as higher BBB scores were found in the EPO treatment group than in the SCI group (P 〈0.01). Pathologically, progressive disruption of the dorsal white matter and regeneration of a few neurons were also observed in SCI rats. TSP-1 and TGF-β expression increased at 24 hours and 7 days after SCI in the injured segment, and it was higher in the SCI group than in the EPO treatment group. Spinal cord samples from the animals demonstrated a TSP-1 optical density of 112.2±6.8 and TSP-1 positive cells of 5.7±1.3 respectively. After injury, the TSP-1 optical density and cell number increased to 287.2±14.3/mm^2 and 23.2±2.6/mm^2 at 24 hours and to 232.1±13.2/mm^2 and 15.2±2.3/mm^2 at 7 days respectively. When EPO treated rats compared with the SCI rats, the TSP-1 optical density and cell number decreased to 213.1 ±11.6/mm^2 and 11.9±1.6/mm^2 at 24 hours and to 189.9±10.5/mm^2 and 9.3±1.5/mm^2 at 7 days, respectively (P 〈0.01). In the SCI rats, the TGF-β optical density and positive neuron number were 291.4±15.2/mm^2 and 28.8±4.9/mm^2 at 24 hours and 259.1±12.3/mm^2 and 23.9±4.1/mm^2 at 7 days respectively. They decreased in the EPO treated rats to 222.8±11.9/mm^2 and 13.7±2.1/mm^2 at 24 hours and to 196.5±9.7/mm^2 and 8.7±2.2/mm^2 at 7 days (P 〈0.01). Conclusions Increased expression of TSP-1 and TGF-β can be found in the injured segment of the spinal cord at 24 hours and 7 days after injury. EPO treatment can effectively prevent pathological alterations from severe spinal cord injury by reduced expression of TSP-1 and TGF-β.
基金funded by National Nature Science Foundation of China (Grant Nos 30970705, 11172190, 81371171, and 81371172)
文摘α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.