Military reform, which is led by the U. S. and sweeping its way to the rest of the world, has now become one of the hottest topics in inter- national military arena. Japan makes no exception. The reconstruction of its...Military reform, which is led by the U. S. and sweeping its way to the rest of the world, has now become one of the hottest topics in inter- national military arena. Japan makes no exception. The reconstruction of its military forces, which is still in progress, is concentrated on the following two aspects. One is the enlargement of the functions of the Self-Defense Forces (SDF). Participation in overseas operations is in-展开更多
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ...Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.展开更多
In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are intr...In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are introduced. This new method can overcome some disadvantages of the classical Principle Component Analysis (PCA) when data are rotundity scatter. The RPC selected by RPCA are more representative,and their significance of geometry is more notable,so that the application of the new algorithm will be very extensive. The performance and effectiveness are simply demonstrated by the geometrical interpretation proposed.展开更多
A well-designed graph plays a fundamental role in graph-based semi-supervised learning; however, the topological structure of a constructed neighborhood is unstable in most current approaches, since they are very sens...A well-designed graph plays a fundamental role in graph-based semi-supervised learning; however, the topological structure of a constructed neighborhood is unstable in most current approaches, since they are very sensitive to the high dimensional, sparse and noisy data. This generally leads to dramatic performance degradation. To deal with this issue, we developed a relative manifold based semisupervised dimensionality reduction (RMSSDR) approach by utilizing the relative manifold to construct a better neighborhood graph with fewer short-circuit edges. Based on the relative cognitive law and manifold distance, a relative transformation is used to construct the relative space and the relative manifold. A relative transformation can improve the ability to distinguish between data points and reduce the impact of noise such that it may be more intuitive, and the relative manifold can more truly reflect the manifold structure since data sets commonly exist in a nonlinear structure. Specifically, RMSSDR makes full use of pairwise constraints that can define the edge weights of the neighborhood graph by minimizing the local reconstruction error and can preserve the global and local geometric structures of the data set. The experimental results on face data sets demonstrate that RMSSDR is better than the current state of the art comparing methods in both performance of classification and robustness.展开更多
文摘Military reform, which is led by the U. S. and sweeping its way to the rest of the world, has now become one of the hottest topics in inter- national military arena. Japan makes no exception. The reconstruction of its military forces, which is still in progress, is concentrated on the following two aspects. One is the enlargement of the functions of the Self-Defense Forces (SDF). Participation in overseas operations is in-
基金This research was funded by the National Natural Science Fund of China[grant number 41701415]Science fund project of Wuhan Institute of Technology[grant number K201724]Science and Technology Development Funds Project of Department of Transportation of Hubei Province[grant number 201900001].
文摘Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance.
基金Supported by the National Natural Science Foundation of China (No.60434020, No.60374020)International Coop-eration Item of Henan Province (No.0446650006)Henan Province Outstanding Youth Science Fund (No.0312001900).
文摘In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are introduced. This new method can overcome some disadvantages of the classical Principle Component Analysis (PCA) when data are rotundity scatter. The RPC selected by RPCA are more representative,and their significance of geometry is more notable,so that the application of the new algorithm will be very extensive. The performance and effectiveness are simply demonstrated by the geometrical interpretation proposed.
基金Acknowledgements The research leading to these results was supported by the National Natural Science Foundation of China (Grants No. 61070090, 61273363, 61003174 and 60973083), the Guangdong Natural Science Funds for Distinguished Young Scholar ($2013050014677), the Fundamental Research Funds for the Central Universities (2014G0007), China Postdoctoral Science Foundation (2013M540655), NSFC-Guangdong Joint Fund (U1035004), and Natural Science Foundation of Guangdong Province, China (10451064101004233 and S2012040008022).
文摘A well-designed graph plays a fundamental role in graph-based semi-supervised learning; however, the topological structure of a constructed neighborhood is unstable in most current approaches, since they are very sensitive to the high dimensional, sparse and noisy data. This generally leads to dramatic performance degradation. To deal with this issue, we developed a relative manifold based semisupervised dimensionality reduction (RMSSDR) approach by utilizing the relative manifold to construct a better neighborhood graph with fewer short-circuit edges. Based on the relative cognitive law and manifold distance, a relative transformation is used to construct the relative space and the relative manifold. A relative transformation can improve the ability to distinguish between data points and reduce the impact of noise such that it may be more intuitive, and the relative manifold can more truly reflect the manifold structure since data sets commonly exist in a nonlinear structure. Specifically, RMSSDR makes full use of pairwise constraints that can define the edge weights of the neighborhood graph by minimizing the local reconstruction error and can preserve the global and local geometric structures of the data set. The experimental results on face data sets demonstrate that RMSSDR is better than the current state of the art comparing methods in both performance of classification and robustness.