In order to study the relation between martensitic transformation temperature range AT (where AT is the difference between martensitic transformation start and finish temperature) and lattice distortion ratio (c/a...In order to study the relation between martensitic transformation temperature range AT (where AT is the difference between martensitic transformation start and finish temperature) and lattice distortion ratio (c/a) of martensitic transforma~ tion, a series of Ni46Mnz8_xGa22Co4Cux (x = 2-5) Heusler alloys is prepared by arc melting method. The vibration sample magnetometer (VSM) experiment results show that AT increases when x 〉 4 and decreases when x 〈 4 with x increasing, and the minimal AT (about 1 K) is found at x = 4. Ambient X-ray diffraction (XRD) results show that AT is proportional to c/a for non-modulated Ni46Mn28_xGa22Co4Cux (x = 2-5) martensites. The relation between AT and c/a is in agreement with the analysis result obtained from crystal lattice mismatch model. About 1000-ppm strain is found for the sample at x = 4 when heating temperature increases from 323 K to 324 K. These properties, which allow a modulation of AT and temperature-induced strain during martensitic transformation, suggest Ni46Mn24Ga22Co4Cu4 can be a promising actuator and sensor.展开更多
To correct the range walk through resolution cell in Doppler beam sharpening (DBS) imaging, a new DBS imaging algorithm based on Keystone transform is proposed. Without the exact values of the movement parameters an...To correct the range walk through resolution cell in Doppler beam sharpening (DBS) imaging, a new DBS imaging algorithm based on Keystone transform is proposed. Without the exact values of the movement parameters and the look angle of the radar platform in the multi-targets environment, a linear trans- form on the received data is employed to correct different range walk values accurately under the condition of Doppler frequency ambiguity in this algorithm. This method can realize the cohe- rent integration in azimuth dimension and improve the azimuth resolution. In order to reduce the computational burden, a fast implementation of Keystone transform is used. Theoretical anal- ysis and simulation results demonstrate the effectiveness of the new algorithm. And through comparing the computational load of the fast implementation with several other algorithms, the real-time processing ability of the proposed algorithm is superior to that of other algorithms.展开更多
An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public ...An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public satisfaction survey data obtained in Wafangdian,China in 2010,this study investigates the suitability of fuzzy clustering analysis method in establishing an evaluation index.Through quantitative analysis of multilayer fuzzy clustering of various evaluation indicators,correlation analysis indicates that if the results of clustering were identical for two evaluation indicators in the same sub-evaluation layer,then one indicator could be removed,or the two indicators merged.For evaluation indicators in different sub-evaluation layers,although clustering reveals attribute correlations,these indicators may not be substituted for one another.Analysis of the applicability of the fuzzy clustering method shows that it plays a certain role in the establishment and correction of an evaluation index.展开更多
The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the refle...The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.展开更多
Wheat (Triticum aestivum L.) is a major staple food crop worldwide. It is economically important because it can be grown in a wide range of climates and geographic regions, and it has made an enormous contribution t...Wheat (Triticum aestivum L.) is a major staple food crop worldwide. It is economically important because it can be grown in a wide range of climates and geographic regions, and it has made an enormous contribution to the increase in global food production over the past four decades (Dixon et al., 2009). Wheat is produced on more than 18% of the arable land in the world, and is the most cultivated crop after maize and rice (FAOSTAT data, 2014). Despite its global strategic significance, progress in genomic and genetic engineering research on wheat has lagged behind that on other major crops due to the difficulty of culturing tissues, and the complexity of its hexaploid genome. The first successful wheat trans- formation was achieved by particle bombardment (Vasil et al., 1992). Since then additional transgenic wheat plants have been obtained by various transformation methods (Harwood, 2011). Microprojectile bombardment is considered to be a promising method, since it is robust, versatile and relatively efficient in terms of gene delivery.展开更多
基金Project supported by the National Key Project of Fundamental Research of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant No.U1232210)
文摘In order to study the relation between martensitic transformation temperature range AT (where AT is the difference between martensitic transformation start and finish temperature) and lattice distortion ratio (c/a) of martensitic transforma~ tion, a series of Ni46Mnz8_xGa22Co4Cux (x = 2-5) Heusler alloys is prepared by arc melting method. The vibration sample magnetometer (VSM) experiment results show that AT increases when x 〉 4 and decreases when x 〈 4 with x increasing, and the minimal AT (about 1 K) is found at x = 4. Ambient X-ray diffraction (XRD) results show that AT is proportional to c/a for non-modulated Ni46Mn28_xGa22Co4Cux (x = 2-5) martensites. The relation between AT and c/a is in agreement with the analysis result obtained from crystal lattice mismatch model. About 1000-ppm strain is found for the sample at x = 4 when heating temperature increases from 323 K to 324 K. These properties, which allow a modulation of AT and temperature-induced strain during martensitic transformation, suggest Ni46Mn24Ga22Co4Cu4 can be a promising actuator and sensor.
基金supported by the Basic Research of the National Department of Defense (A2220060054)the Foundation of Shanghai Aerospace Science and Technology
文摘To correct the range walk through resolution cell in Doppler beam sharpening (DBS) imaging, a new DBS imaging algorithm based on Keystone transform is proposed. Without the exact values of the movement parameters and the look angle of the radar platform in the multi-targets environment, a linear trans- form on the received data is employed to correct different range walk values accurately under the condition of Doppler frequency ambiguity in this algorithm. This method can realize the cohe- rent integration in azimuth dimension and improve the azimuth resolution. In order to reduce the computational burden, a fast implementation of Keystone transform is used. Theoretical anal- ysis and simulation results demonstrate the effectiveness of the new algorithm. And through comparing the computational load of the fast implementation with several other algorithms, the real-time processing ability of the proposed algorithm is superior to that of other algorithms.
基金National Science Foundation of China(91637105,41775048 and 41475041)National Key R&D Program of China(2018YFC1507800)Research on Tourism Traffic Meteorological Service Products in Heilongjiang Province(HQZD2017004)
文摘An evaluation index is a prerequisite for the scientific evaluation of a public meteorological service.This paper aims to explore a technical method for determining and screening evaluation indicators.Based on public satisfaction survey data obtained in Wafangdian,China in 2010,this study investigates the suitability of fuzzy clustering analysis method in establishing an evaluation index.Through quantitative analysis of multilayer fuzzy clustering of various evaluation indicators,correlation analysis indicates that if the results of clustering were identical for two evaluation indicators in the same sub-evaluation layer,then one indicator could be removed,or the two indicators merged.For evaluation indicators in different sub-evaluation layers,although clustering reveals attribute correlations,these indicators may not be substituted for one another.Analysis of the applicability of the fuzzy clustering method shows that it plays a certain role in the establishment and correction of an evaluation index.
基金Supported by the National Natural Science Foundation of China under Grant No 11604115the Educational Commission of Jiangsu Province of China under Grant No 17KJA460004the Huaian Science and Technology Funds under Grant No HAC201701
文摘The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.
基金funded by the Ministry of Agriculture of China(Nos.2014ZX0801003B and 2013ZX08002-004)
文摘Wheat (Triticum aestivum L.) is a major staple food crop worldwide. It is economically important because it can be grown in a wide range of climates and geographic regions, and it has made an enormous contribution to the increase in global food production over the past four decades (Dixon et al., 2009). Wheat is produced on more than 18% of the arable land in the world, and is the most cultivated crop after maize and rice (FAOSTAT data, 2014). Despite its global strategic significance, progress in genomic and genetic engineering research on wheat has lagged behind that on other major crops due to the difficulty of culturing tissues, and the complexity of its hexaploid genome. The first successful wheat trans- formation was achieved by particle bombardment (Vasil et al., 1992). Since then additional transgenic wheat plants have been obtained by various transformation methods (Harwood, 2011). Microprojectile bombardment is considered to be a promising method, since it is robust, versatile and relatively efficient in terms of gene delivery.