Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati...Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.展开更多
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ...On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.展开更多
Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’...Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.展开更多
The mechanism of transport of chemicals in soil is an important research topic of environmental science and engineering, and some models and methods for a variety of solute transport problems have been done. Howeve...The mechanism of transport of chemicals in soil is an important research topic of environmental science and engineering, and some models and methods for a variety of solute transport problems have been done. However. most of previous works are usually for a soil column of infinite dimension. Starting from the one-dimension transient solute transport equation and its boundary and initial condition for a solute transport problem of soil column of finite length, this work has successfully applied a variable transformation to simplify the partial differential equation of solute transport problem. And an analytical serial solution for the simplified equation is then established by the so-called separated variable method and the superposition method. Compared with numerical methods such as finite different method and finite element method, this analytical solution is more accurate and of higher computation efficiency. In addition, the solution procedure presented could be extended for applications such as quality analysis, design of physical experimentation, or parameter estimation and measurement of solute transport problems.展开更多
For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral fin...For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.展开更多
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ...A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.展开更多
A novel approximation algorithm was proposed for the problem of finding the minimum total cost of all routes in Capacity Vehicle Routing Problem (CVRP). CVRP can be partitioned into three parts: the selection of vehic...A novel approximation algorithm was proposed for the problem of finding the minimum total cost of all routes in Capacity Vehicle Routing Problem (CVRP). CVRP can be partitioned into three parts: the selection of vehicles among the available vehicles, the initial routing of the selected fleet and the routing optimization. Fuzzy C-means (FCM) can group the customers with close Euclidean distance into the same vehicle according to the principle of similar feature partition. Transiently chaotic neural network (TCNN) combines local search and global search, possessing high search efficiency. It will solve the routes to near optimality. A simple tabu search (TS) procedure can improve the routes to more optimality. The computations on benchmark problems and comparisons with other results in literatures show that the proposed algorithm is a viable and effective approach for CVRP.展开更多
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi...This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.展开更多
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
三维全堆芯pin-by-pin中子输运模型的高效加速方法是核反应堆高精度计算的重点和难点。本文有效融合课题组开发的并行多维离散纵坐标(S_(N))中子输运程序comeSn和Jacobian-Free Newton Krylov(JFNK)通用求解框架comeJFNK的高效并行特性...三维全堆芯pin-by-pin中子输运模型的高效加速方法是核反应堆高精度计算的重点和难点。本文有效融合课题组开发的并行多维离散纵坐标(S_(N))中子输运程序comeSn和Jacobian-Free Newton Krylov(JFNK)通用求解框架comeJFNK的高效并行特性、鲁棒性和强收敛性,开发了一套三维稳态及瞬态中子输运模型的JFNK并行求解程序comeSn_JFNK。为了提高计算效率,选择中子标通量密度(而非中子角通量密度)作为JFNK全局求解变量,并利用基于空间区域并行的KBA输运扫描方法和物理预处理方法,分别构建了稳态及瞬态模型的JFNK统一残差计算模型。计算结果表明,comeSn_JFNK相比于comeSn,计算效率具有显著优势,对于三维pin-by-pin稳态KAIST-3A算例,加速比为10倍以上;对于栅元均匀化的二维七群瞬态C5G7-TD2系列基准算例,加速比约为30倍。展开更多
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
基金supported by the National Natural Science Foundation of China(Nos.12172078,51576026)Fundamental Research Funds for the Central Universities in China(No.DUT21LK04)。
文摘Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.
基金supported by the National Natural Science Foundation of China(Grant No.51078250)the Research Project by Shanxi Scholarship Council of Shanxi Province,China(Grant No.2013-096)the Scientific&Technological Innovation Program for Postgraduates of Taiyuan University of Science and Technology,China(Grant No.20125026)
文摘On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.
文摘Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.
基金Acknowledgements: The work was supported by the National Natural Science Foundation of China (No. 90502006/D0123), Hunan provincial Natural Science Foundation of China (No. 06JJ3020) and Scientific Research Fund of Hunan Provincial Education Department (No. 06C500).
文摘The mechanism of transport of chemicals in soil is an important research topic of environmental science and engineering, and some models and methods for a variety of solute transport problems have been done. However. most of previous works are usually for a soil column of infinite dimension. Starting from the one-dimension transient solute transport equation and its boundary and initial condition for a solute transport problem of soil column of finite length, this work has successfully applied a variable transformation to simplify the partial differential equation of solute transport problem. And an analytical serial solution for the simplified equation is then established by the so-called separated variable method and the superposition method. Compared with numerical methods such as finite different method and finite element method, this analytical solution is more accurate and of higher computation efficiency. In addition, the solution procedure presented could be extended for applications such as quality analysis, design of physical experimentation, or parameter estimation and measurement of solute transport problems.
基金supported by the National Natural Science Foundation of China(No.11271273)
文摘For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11002054)the Foundation of Hunan Educational Committee(Grant No.12C0059).
文摘A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.
文摘A novel approximation algorithm was proposed for the problem of finding the minimum total cost of all routes in Capacity Vehicle Routing Problem (CVRP). CVRP can be partitioned into three parts: the selection of vehicles among the available vehicles, the initial routing of the selected fleet and the routing optimization. Fuzzy C-means (FCM) can group the customers with close Euclidean distance into the same vehicle according to the principle of similar feature partition. Transiently chaotic neural network (TCNN) combines local search and global search, possessing high search efficiency. It will solve the routes to near optimality. A simple tabu search (TS) procedure can improve the routes to more optimality. The computations on benchmark problems and comparisons with other results in literatures show that the proposed algorithm is a viable and effective approach for CVRP.
文摘This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。
文摘三维全堆芯pin-by-pin中子输运模型的高效加速方法是核反应堆高精度计算的重点和难点。本文有效融合课题组开发的并行多维离散纵坐标(S_(N))中子输运程序comeSn和Jacobian-Free Newton Krylov(JFNK)通用求解框架comeJFNK的高效并行特性、鲁棒性和强收敛性,开发了一套三维稳态及瞬态中子输运模型的JFNK并行求解程序comeSn_JFNK。为了提高计算效率,选择中子标通量密度(而非中子角通量密度)作为JFNK全局求解变量,并利用基于空间区域并行的KBA输运扫描方法和物理预处理方法,分别构建了稳态及瞬态模型的JFNK统一残差计算模型。计算结果表明,comeSn_JFNK相比于comeSn,计算效率具有显著优势,对于三维pin-by-pin稳态KAIST-3A算例,加速比为10倍以上;对于栅元均匀化的二维七群瞬态C5G7-TD2系列基准算例,加速比约为30倍。