During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fract...Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.展开更多
Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at ...Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising t...Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising to solve the problem of non-unique solution.In this work,a new deep reinforcement learning(DRL)based approach is proposed for automatic curve matching for well test interpretation,by using the double deep Q-network(DDQN).The DDQN algorithms are applied to train agents for automatic parameter tuning in three conventional well-testing models.In addition,to alleviate the dimensional disaster problem of parameter space,an asynchronous parameter adjustment strategy is used to train the agent.Finally,field applications are carried out by using the new DRL approaches.Results show that step number required for the DDQN to complete the curve matching is the least among,when comparing the naive deep Q-network(naive DQN)and deep Q-network(DQN).We also show that DDQN can improve the robustness of curve matching in comparison with supervised machine learning algorithms.Using DDQN algorithm to perform 100 curve matching tests on three traditional well test models,the results show that the mean relative error of the parameters is 7.58%for the homogeneous model,10.66%for the radial composite model,and 12.79%for the dual porosity model.In the actual field application,it is found that a good curve fitting can be obtained with only 30 steps of parameter adjustment.展开更多
Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on s...Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on several types of soft materials under the condition of a flat frontal impact. The impact force waveform of soft materials was found to consist of a thorn-shaped waveform and a succeeding mountain-shaped waveform. Based on our experimental observations, we believe that a large viscosity resistance is rapidly changed to a small resistance in the course of the impact. In the present study, the cause of this distinct waveform is discussed based on a dynamics model. The study applies a standard linear solid (SLS) model in which the viscosity transient phenomenon is considered is applied. Three types of impact force waveforms of actual soft materials are simulated using the SLS model. Some features of the impact force waveform of soft materials can be explained using the SLS model.展开更多
Pressure transient analysis has been used to evaluate performance of a well located between one sealing fault and one constant pressure boundary. Type curves were generated by determining 1) dimensionless pressure and...Pressure transient analysis has been used to evaluate performance of a well located between one sealing fault and one constant pressure boundary. Type curves were generated by determining 1) dimensionless pressure and 2) rate of change of dimensionless pressure drop with respect to dimensionless time. When the well is located closer to the no flow boundary, both sets of type curves have three distinct slopes. These slopes characterize: 1) flow in an infinite reservoir, 2) presence of the no flow, and 3) the constant-pressure boundaries. When the well is closer to the constant pressure boundary, the type curves show two distinct slopes. These correspond to: 1) flow in an infinite reservoir, and 2) the presence of a constant pressure boundary. The type curves can be used to match actual pressure drawdown data and determine the drainage area and relative well location with respect to physical boundaries.展开更多
Due to the high difficulties, high investment, and high risks in deepwater oil and gas well testing, major safety problems can occur easily. A key to prevent accidents is to conduct safety assessment and control on de...Due to the high difficulties, high investment, and high risks in deepwater oil and gas well testing, major safety problems can occur easily. A key to prevent accidents is to conduct safety assessment and control on deepwater testing and to improve the testing technology. The deepwater of the South China Sea has some special environmental features: long distance from offshore, frequent typhoons in summer and constant monsoons in winter, and the presence of sandy slopes, sandy ridges and internal waves, coupled with the complex properties of oil and gas reserves which bring more challenges to deepwater well testing. In combination with deepwater well testing practice in the South China Sea, this paper analyzes the main potential risks in deepwater well testing and concludes that there are risks of failures of testing string, tools, and ground processes. Other risks are gas hydrate blockage, reservoir stratum sanding, and typhoon impacts. Specific precautions are also proposed in response to these risks in the paper.展开更多
Based on the research of the formation mechanism and evolution rule of hydrate flow obstacle during deep-water gas well testing,a new method for the prevention of hydrate flow obstacle based on safety testing window i...Based on the research of the formation mechanism and evolution rule of hydrate flow obstacle during deep-water gas well testing,a new method for the prevention of hydrate flow obstacle based on safety testing window is proposed by changing the previous idea of"preventing formation"to the idea of"allowing formation,preventing plugging".The results show that the effective inner diameter of the testing tubing and the wellhead pressure decrease gradually with the formation and precipitation of hydrates during deep-water gas well testing,and it presents three typical processes of slow,fast and sudden changes.There is a safety testing window during deep-water gas well testing.The safety testing window of deep-water gas well testing decreases first and then increases with the increase of gas production rate,and increases with the increase of hydrate inhibitor concentrations.In the case with different testing production rates,a reasonable testing order with alternate low and high gas production rates has been proposed to further reduce the dosage of hydrate inhibitor and even avoid the use of hydrate inhibitors considering the decomposition and fall-off of hydrates.Compared with the traditional methods,the new method based on safety testing window can reduce the dosage of hydrate inhibitor by more than 50%.展开更多
By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology...By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.展开更多
During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical me...During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.展开更多
This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect ...This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ...The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.展开更多
The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. ...The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls.展开更多
Hydrogels with their time-dependent intrinsic behaviors have recently been used widely in soft structures as sensors/actuators.One of the most interesting structures is the bilayer made up of hydrogels which may under...Hydrogels with their time-dependent intrinsic behaviors have recently been used widely in soft structures as sensors/actuators.One of the most interesting structures is the bilayer made up of hydrogels which may undergo swelling-induced bending.In this work,by proposing a semi-analytical method,the transient bending of hydrogel-based bilayers is investigated.Utilizing nonlinear solid mechanics,a robust semi-analytical solution is developed which captures the transient finite bending of hydrogel-based bilayers.Moreover,the multiphysics model of the hydrogels is implemented in the finite element method(FEM) framework to verify the developed semi-analytical procedure results.The effects of different material properties are investigated to illustrate the nonlinear behavior of these structures.The von-Mises stress contour extracted from FEM shows that the critical area of these soft structures is at the interface of the layers which experiences the maximum stress,and this area is most likely to rupture in large deformations.展开更多
An analytical solution in physical variable space is presented for transient gas flows during constant-rate production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture conduct...An analytical solution in physical variable space is presented for transient gas flows during constant-rate production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture conductivity.The solution is based on the short-time asymptotic solution and a new approximate transient elliptical flow solution,which covers transient flows from the bilinear flow regime to the pseudo-radial flow regime.The solution covers the well-known asymptotic solutions in both short-and long-time limits of bilinear and pseudo-radial flows.The analytical model provides a practical and reliable engineering tool to evaluate the fractured reservoir properties,which can be programmed using a spreadsheet.展开更多
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
基金funded by the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,grant numbers“2020CX020202,2020CX030202 and 2020CX010403”.
文摘Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.
基金financial support from the special fund of China’s central government for the development of local colleges and universities―the project of national first-level discipline in Oil and Gas Engineering, the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125019)the National Program on Key fundamental Research Project (973 Program, Grant No. 2011CB201005)
文摘Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金funding support from National Natural Science Foundation of China(52074322)Beijing Natural Science Foundation(3204052)+1 种基金Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC032)National Major Project of China(2017ZX05030002-005)。
文摘Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising to solve the problem of non-unique solution.In this work,a new deep reinforcement learning(DRL)based approach is proposed for automatic curve matching for well test interpretation,by using the double deep Q-network(DDQN).The DDQN algorithms are applied to train agents for automatic parameter tuning in three conventional well-testing models.In addition,to alleviate the dimensional disaster problem of parameter space,an asynchronous parameter adjustment strategy is used to train the agent.Finally,field applications are carried out by using the new DRL approaches.Results show that step number required for the DDQN to complete the curve matching is the least among,when comparing the naive deep Q-network(naive DQN)and deep Q-network(DQN).We also show that DDQN can improve the robustness of curve matching in comparison with supervised machine learning algorithms.Using DDQN algorithm to perform 100 curve matching tests on three traditional well test models,the results show that the mean relative error of the parameters is 7.58%for the homogeneous model,10.66%for the radial composite model,and 12.79%for the dual porosity model.In the actual field application,it is found that a good curve fitting can be obtained with only 30 steps of parameter adjustment.
文摘Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on several types of soft materials under the condition of a flat frontal impact. The impact force waveform of soft materials was found to consist of a thorn-shaped waveform and a succeeding mountain-shaped waveform. Based on our experimental observations, we believe that a large viscosity resistance is rapidly changed to a small resistance in the course of the impact. In the present study, the cause of this distinct waveform is discussed based on a dynamics model. The study applies a standard linear solid (SLS) model in which the viscosity transient phenomenon is considered is applied. Three types of impact force waveforms of actual soft materials are simulated using the SLS model. Some features of the impact force waveform of soft materials can be explained using the SLS model.
文摘Pressure transient analysis has been used to evaluate performance of a well located between one sealing fault and one constant pressure boundary. Type curves were generated by determining 1) dimensionless pressure and 2) rate of change of dimensionless pressure drop with respect to dimensionless time. When the well is located closer to the no flow boundary, both sets of type curves have three distinct slopes. These slopes characterize: 1) flow in an infinite reservoir, 2) presence of the no flow, and 3) the constant-pressure boundaries. When the well is closer to the constant pressure boundary, the type curves show two distinct slopes. These correspond to: 1) flow in an infinite reservoir, and 2) the presence of a constant pressure boundary. The type curves can be used to match actual pressure drawdown data and determine the drainage area and relative well location with respect to physical boundaries.
文摘Due to the high difficulties, high investment, and high risks in deepwater oil and gas well testing, major safety problems can occur easily. A key to prevent accidents is to conduct safety assessment and control on deepwater testing and to improve the testing technology. The deepwater of the South China Sea has some special environmental features: long distance from offshore, frequent typhoons in summer and constant monsoons in winter, and the presence of sandy slopes, sandy ridges and internal waves, coupled with the complex properties of oil and gas reserves which bring more challenges to deepwater well testing. In combination with deepwater well testing practice in the South China Sea, this paper analyzes the main potential risks in deepwater well testing and concludes that there are risks of failures of testing string, tools, and ground processes. Other risks are gas hydrate blockage, reservoir stratum sanding, and typhoon impacts. Specific precautions are also proposed in response to these risks in the paper.
基金Supported by the National Natural Science Foundation of China(51991363,51974350)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0501)Changjiang Scholars Program(Q2016135)
文摘Based on the research of the formation mechanism and evolution rule of hydrate flow obstacle during deep-water gas well testing,a new method for the prevention of hydrate flow obstacle based on safety testing window is proposed by changing the previous idea of"preventing formation"to the idea of"allowing formation,preventing plugging".The results show that the effective inner diameter of the testing tubing and the wellhead pressure decrease gradually with the formation and precipitation of hydrates during deep-water gas well testing,and it presents three typical processes of slow,fast and sudden changes.There is a safety testing window during deep-water gas well testing.The safety testing window of deep-water gas well testing decreases first and then increases with the increase of gas production rate,and increases with the increase of hydrate inhibitor concentrations.In the case with different testing production rates,a reasonable testing order with alternate low and high gas production rates has been proposed to further reduce the dosage of hydrate inhibitor and even avoid the use of hydrate inhibitors considering the decomposition and fall-off of hydrates.Compared with the traditional methods,the new method based on safety testing window can reduce the dosage of hydrate inhibitor by more than 50%.
文摘By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2015CB251205)
文摘During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Innovation Foundation for Postgraduate of Hunan Province,China (Grant No. CX2011B026)
文摘This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金This work was supported by the National Natural Science Foundation of China(Nos.12335007,11835001,11921006,12035001 and 12205340)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY13)Gansu Natural Science Foundation(No.22JR5RA123).
文摘The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.
文摘The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls.
文摘Hydrogels with their time-dependent intrinsic behaviors have recently been used widely in soft structures as sensors/actuators.One of the most interesting structures is the bilayer made up of hydrogels which may undergo swelling-induced bending.In this work,by proposing a semi-analytical method,the transient bending of hydrogel-based bilayers is investigated.Utilizing nonlinear solid mechanics,a robust semi-analytical solution is developed which captures the transient finite bending of hydrogel-based bilayers.Moreover,the multiphysics model of the hydrogels is implemented in the finite element method(FEM) framework to verify the developed semi-analytical procedure results.The effects of different material properties are investigated to illustrate the nonlinear behavior of these structures.The von-Mises stress contour extracted from FEM shows that the critical area of these soft structures is at the interface of the layers which experiences the maximum stress,and this area is most likely to rupture in large deformations.
基金supported by the Chinese National Natural Science Foundation Grant 52074314
文摘An analytical solution in physical variable space is presented for transient gas flows during constant-rate production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture conductivity.The solution is based on the short-time asymptotic solution and a new approximate transient elliptical flow solution,which covers transient flows from the bilinear flow regime to the pseudo-radial flow regime.The solution covers the well-known asymptotic solutions in both short-and long-time limits of bilinear and pseudo-radial flows.The analytical model provides a practical and reliable engineering tool to evaluate the fractured reservoir properties,which can be programmed using a spreadsheet.