期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Risk Analysis of Information System Security Based on Distance of Information-State Transition 被引量:2
1
作者 ZHOU Chao PAN Ping +1 位作者 MAO Xinyue HUANG Liang 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期210-218,共9页
The configuration of information system security policy is directly related to the information asset risk, and the configuration required by the classified security protection is able to ensure the optimal and minimum... The configuration of information system security policy is directly related to the information asset risk, and the configuration required by the classified security protection is able to ensure the optimal and minimum policy in the corresponding security level. Through the random survey on the information assets of multiple departments, this paper proposes the relative deviation distance of security policy configuration as risk measure parameter based on the distance of information-state transition(DIT) theory. By quantitatively analyzing the information asset weight, deviation degree and DIT, we establish the evaluation model for information system. With example analysis, the results prove that this method conducts effective risk evaluation on the information system intuitively and reliably, avoids the threat caused by subjective measurement, and shows performance benefits compared with existing solutions. It is not only theoretically but also practically feasible to realize the scientific analysis of security risk for the information system. 展开更多
关键词 distance of information-state transition(DIT) deviation distance information asset risk analysis
原文传递
城市轨道交通票务管理系统设计与实现 被引量:5
2
作者 陈莹 付保明 +2 位作者 张宁 张鲁栋 陆海亭 《铁路通信信号工程技术》 2023年第5期71-75,共5页
针对城市轨道交通票务管理工作存在的低效率、流程繁琐等问题,在分析日常票务管理业务需求的基础上,结合轨道交通数字化、信息化、智能化的发展趋势,提出一种票务管理系统化解决方案,并从业务功能、系统架构等角度对该系统方案进行分析... 针对城市轨道交通票务管理工作存在的低效率、流程繁琐等问题,在分析日常票务管理业务需求的基础上,结合轨道交通数字化、信息化、智能化的发展趋势,提出一种票务管理系统化解决方案,并从业务功能、系统架构等角度对该系统方案进行分析。最后,将该系统方案应用到苏州轨道交通的票务管理工作中,减轻车站票务人员工作量,降低人员成本,提高苏州轨道交通票务管理水平。轨道票务管理系统的设计与实现为城市轨道交通票务管理的信息化发展提供思路,为行业票务管理工作提供经验。 展开更多
关键词 城市轨道交通 票务管理 信息化 系统架构
下载PDF
Machine learning assisted prediction of dielectric temperature spectrum of ferroelectrics
3
作者 Jingjin He Changxin Wang +7 位作者 Junjie Li Chuanbao Liu Dezhen Xue Jiangli Cao Yanjing Su Lijie Qiao Turab Lookman Yang Bai 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第9期1793-1804,共12页
In material science and engineering,obtaining a spectrum from a measurement is often time-consuming and its accurate prediction using data mining can also be difficult.In this work,we propose a machine learning strate... In material science and engineering,obtaining a spectrum from a measurement is often time-consuming and its accurate prediction using data mining can also be difficult.In this work,we propose a machine learning strategy based on a deep neural network model to accurately predict the dielectric temperature spectrum for a typical multi-component ferroelectric system,i.e.,(Ba_(1−x−y)Ca_(x)Sr_(y))(Ti_(1−u−v−w)Zr_(u)Sn_(v)Hf_(w))O_(3).The deep neural network model uses physical features as inputs and directly outputs the full spectrum,in addition to yielding the octahedral factor,Matyonov–Batsanov electronegativity,ratio of valence electron to nuclear charge,and core electron distance(Schubert)as four key descriptors.Owing to the physically meaningful features,our model exhibits better performance and generalization ability in the broader composition space of BaTiO3-based solid solutions.And the prediction accuracy is superior to traditional machine learning models that predict dielectric permittivity values at each temperature.Furthermore,the transition temperature and the degree of dispersion of the ferroelectric phase transition are easily extracted from the predicted spectra to provide richer physical information.The prediction is also experimentally validated by typical samples of(Ba_(0.85)Ca_(0.15))(Ti_(0.98–x)Zr_(x)Hf_(0.02))O_(3).This work provides insights for accelerating spectra predictions and extracting ferroelectric phase transition information. 展开更多
关键词 machine learning(ML) dielectric temperature spectrum FERROELECTRICS phase transition information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部