The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more d...The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.展开更多
The influence of the pressure transmission medium(PTM)on the excitonic interband transitions in monolayer tungsten diselenide(WSe2)is investigated using photoluminescence(PL)spectra under hydrostatic pressure up...The influence of the pressure transmission medium(PTM)on the excitonic interband transitions in monolayer tungsten diselenide(WSe2)is investigated using photoluminescence(PL)spectra under hydrostatic pressure up to 5GPa.Three kinds of PTMs,condensed argon(Ar),1:1 n-pentane and isopentane mixture(PM),and4:1 methanol and ethanol mixture(MEM,a PTM with polarity),are used.It is found that when either Ar or PM is used as the PTM,the PL peak of exciton related to the direct K-K interband transition shows a pressure-induced blue-shift at a rate of 32±4 or 32±1 meV/GPa,while it turns to be 50±9meV/GPa when MEM is used as the PTM.The indirect A-K interband transition presents almost no shift with increasing pressure up to approximatel.y 5 GPa when Ar and PM are used as the PTM,while it shows a red-shift at the rate of-17±7meV/GPa by using MEM as the PTM.These results reveal that the optical interband transitions of monolayer WSe2 are very sensitive to the polarity of the PTM.The anomalous pressure coefficient obtained using the polar PTM of MEM is ascribed to the existence of hydrogen-like bonds between hydroxyl in MEM and Se atoms under hydrostatic pressure.展开更多
文摘The terminal velocity has been widely used in extensive fields, but the complexity of drag coefficient expression leads to the calculation of terminal velocity in transitional flow (1 〈 Re ≤ 1000) with much more difficulty than those in laminar flow (Re ≤ 1) and turbulent flow (Re ≥ 1000). This paper summarized and compared 24 drag coefficient correlations, and developed an expression for calculating the terminal velocity in transitional flow, and also analyzed the effects of particle density and size, fluid density and viscosity on terminal velocity. The results show that 19 of 24 previously published correlations for drag coefficient have good prediction performance and can be used for calculating the terminal velocity in the entire transitional flow with higher accuracy. Adapting two dimensionless parameters (w*, d*), a proposed explicit correlation, w*=-25.68654 × exp (-d*/77.02069)+ 24.89826, is attained in transitional flow with good performance, which is helpful in calculating the terminal velocity.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301202the National Natural Science Foundation of China under Grant Nos 11474275,61674135 and 91536101+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDPB0603the China Postdoctoral Science Foundation under Grant No 2017M622400
文摘The influence of the pressure transmission medium(PTM)on the excitonic interband transitions in monolayer tungsten diselenide(WSe2)is investigated using photoluminescence(PL)spectra under hydrostatic pressure up to 5GPa.Three kinds of PTMs,condensed argon(Ar),1:1 n-pentane and isopentane mixture(PM),and4:1 methanol and ethanol mixture(MEM,a PTM with polarity),are used.It is found that when either Ar or PM is used as the PTM,the PL peak of exciton related to the direct K-K interband transition shows a pressure-induced blue-shift at a rate of 32±4 or 32±1 meV/GPa,while it turns to be 50±9meV/GPa when MEM is used as the PTM.The indirect A-K interband transition presents almost no shift with increasing pressure up to approximatel.y 5 GPa when Ar and PM are used as the PTM,while it shows a red-shift at the rate of-17±7meV/GPa by using MEM as the PTM.These results reveal that the optical interband transitions of monolayer WSe2 are very sensitive to the polarity of the PTM.The anomalous pressure coefficient obtained using the polar PTM of MEM is ascribed to the existence of hydrogen-like bonds between hydroxyl in MEM and Se atoms under hydrostatic pressure.